
ptg

ptg

800 East 96th Street, Indianapolis, Indiana 46240 USA

Lauren Darcey
Shane Conder

SamsTeachYourself

24in

Hours

Android™

Application Development

ptg

Sams Teach Yourself Android™ Application Development in 24 Hours

Copyright © 2010 Lauren Darcey and Shane Conder

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

Visible Earth images owned by NASA, http://visibleearth.nasa.gov/.

ISBN-13: 978-0-321-67335-0
ISBN-10: 0-321-67335-2

Library of Congress Cataloging-in-Publication Data

Darcey, Lauren, 1977-

Sams teach yourself Android application development in 24 hours / Lauren Darcey, Shane
Conder.

p. cm. — (Sams teach yourself in 24 Hours)

Includes index.

ISBN 978-0-321-67335-0 (pbk.)

1. Application software—Development. 2. Android (Electronic resource) 3. Mobile computing.
I. Conder, Shane, 1975- II. Title.

QA76.76.A65D26 2010

005.1—dc22

2010011663

Printed in the United States of America

First Printing June 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Kitty Wilson

Indexer
Erika Millen

Proofreader
Sheri Cain

Technical Editor
Jonathan Jackson

Publishing
Coordinator
Olivia Basegio

Book Designer
Gary Adair

Senior Compositor
Gloria Schurick

http://visibleearth.nasa.gov/

ptg

Contents at a Glance

Introduction. ... 1

Part I: Android Fundamentals

HOUR 1 Getting Started with Android 7

2 Mastering the Android Development Tools 27

3 Building Android Applications . .. 43

4 Managing Application Resources. ... 59

5 Configuring the Android Manifest File. .. 77

6 Designing an Application Framework. .. 95

Part II: Building an Application Framework

HOUR 7 Implementing an Animated Splash Screen . .. 113

8 Implementing the Main Menu Screen . .. 127

9 Developing the Help and Scores Screens 143

10 Building Forms to Collect User Input. .. 161

11 Using Dialogs to Collect User Input . .. 181

12 Adding Application Logic 197

Part III: Enhancing Your Application with Powerful Android Features

HOUR 13 Working with Images and the Camera. ... 217

14 Adding Support for Location-Based Services . .. 233

15 Adding Network Support 255

16 Adding More Network Support 277

17 Adding Social Features . .. 291

18 Creating a Home Screen App Widget . .. 305

Part IV: Adding Polish to Your Android Application

HOUR 19 Internationalizing Your Application . .. 321

20 Developing for Different Devices 333

21 Diving Deeper into Android . .. 347

22 Testing Android Applications. .. 367

ptg

iv

Teach Yourself Android Application Development in 24 Hours

Part V: Publishing Your Application

HOUR 23 Getting Ready to Publish 383

24 Publishing on the Android Market . .. 395

Part VI: Appendixes

A Configuring Your Android Development Environment 409

B Eclipse IDE Tips and Tricks 415

C Supplementary Materials. ... 423

ptg

Table of Contents

Introduction 1

Part I: Android Fundamentals

HOUR 1: Getting Started with Android 7

Introducing Android 7

Familiarizing Yourself with Eclipse. ... 9

Running and Debugging Applications . .. 17

Summary 23

Q&A. ... 23

Workshop 24
HOUR 2: Mastering the Android Development Tools

27

Using the Android Documentation . .. 27

Debugging Applications with DDMS . .. 29

Working with the Android Emulator . .. 35

Using Other Android Tools 38

Summary 39

Q&A. ... 40

Workshop 40
HOUR 3: Building Android Applications

43

Designing a Typical Android Application 43

Using the Application Context . .. 46

Working with Activities . .. 47

Working with Intents. .. 51

Working with Dialogs . .. 53

Logging Application Information 54

Summary 55

Q&A. ... 55

Workshop 56

v

ptg

HOUR 4: Managing Application Resources 59

Using Application and System Resources 59

Working with Simple Resource Values . .. 63

Working with Drawable Resources 66

Working with Layouts . .. 67

Working with Files 71

Working with Other Types of Resources 73

Summary 73

Q&A. ... 74

Workshop 75
HOUR 5: Configuring the Android Manifest File

77

Exploring the Android Manifest File. .. 77

Configuring Basic Application Settings . .. 81

Defining Activities 86

Managing Application Permissions . .. 88

Managing Other Application Settings . .. 91

Summary 91

Q&A. ... 92

Workshop 93
HOUR 6: Designing an Application Framework

95

Designing an Android Trivia Game . .. 95

Implementing an Application Prototype 102

Running the Game Prototype . .. 107

Summary. ... 109

Q&A . .. 110

Workshop 110

vi

Teach Yourself Android Application Development in 24 Hours

ptg

Part II: Building an Application Framework

HOUR 7: Implementing an Animated Splash Screen 113

Designing the Splash Screen . .. 113

Implementing the Splash Screen Layout 114

Working with Animation 119

Summary. ... 123

Q&A . .. 124

Workshop 124
HOUR 8: Implementing the Main Menu Screen

127

Designing the Main Menu Screen . .. 127

Implementing the Main Menu Screen Layout 131

Working with the ListView Control . .. 134

Working with Other Menu Types 138

Summary. ... 141

Q&A . .. 141

Workshop 141
HOUR 9: Developing the Help and Scores Screens

143

Designing the Help Screen . .. 144

Implementing the Help Screen Layout 145

Working with Files. ... 147

Designing the Scores Screen . .. 149

Implementing the Scores Screen Layout 151

Designing a Screen with Tabs . .. 154

Working with XML . .. 156

Summary. ... 158

Q&A . .. 158

Workshop 159

Contents

vii

ptg

HOUR 10: Building Forms to Collect User Input 161

Designing the Settings Screen . .. 161

Implementing the Settings Screen Layout . .. 165

Using Common Form Controls 167

Saving Form Data with SharedPreferences. .. 175

Summary. ... 178

Q&A . .. 178

Workshop 179
HOUR 11: Using Dialogs to Collect User Input

181

Working with Activity Dialogs . .. 181

Using DatePickerDialog 184

Working with Custom Dialogs. .. 187

Summary. ... 194

Q&A . .. 194

Workshop 194
HOUR 12: Adding Application Logic

197

Designing the Game Screen . .. 197

Implementing the Game Screen Layout 200

Working with ViewSwitcher Controls . .. 203

Wiring Up Game Logic. .. 208

Summary. ... 214

Q&A . .. 215

Workshop 215

Part III: Enhancing Your Application with Powerful Android Features

HOUR 13: Working with Images and the Camera 217

Designing the Avatar Feature . .. 217

Adding an Avatar to the Settings Screen Layout 219

Working with ImageButton Controls . .. 221

Working with Image Media . .. 223

viii

Teach Yourself Android Application Development in 24 Hours

ptg

Working with Bitmaps . .. 228

Summary. ... 230

Q&A . .. 230

Workshop 231
HOUR 14: Adding Support for Location-Based Services

233

Designing the Favorite Place Feature . .. 233

Implementing the Framework for the Favorite Place Feature 237

Using Location-Based Services . .. 240

Using Geocoding Services 246

Working with Maps . .. 248

Summary. ... 251

Q&A . .. 251

Workshop 252
HOUR 15: Adding Network Support

255

Designing Network Applications 255

Developing Network Applications . .. 257

Accessing Network Services . .. 260

Indicating Network Activity with Progress Bars 262

Running Tasks Asynchronously 265

Downloading and Displaying Scores . .. 267

Downloading and Parsing Question Batches . .. 271

Summary. ... 274

Q&A . .. 274

Workshop 274
HOUR 16: Adding More Network Support

277

Determining Data to Send to the Server 277

Accessing Phone Status Information. .. 278

Uploading Data to a Remote Application Server . .. 281

Summary. ... 289

Q&A . .. 289

Workshop 289

Contents

ix

ptg

HOUR 17: Adding Social Features 291

Enhancing Your Application with Social Features . .. 291

Adding Friend Support to Your Application . .. 292

Integrating with Social Networking Services. .. 300

Summary. ... 302

Q&A . .. 302

Workshop 303
HOUR 18: Creating a Home Screen App Widget

305

Designing an App Widget. ... 305

Handling App Widget User Events . .. 313

Working with Widget Background Operations 314

Summary. ... 318

Q&A . .. 318

Workshop 319

Part IV: Adding Polish to Your Android Application

HOUR 19: Internationalizing Your Application 321

General Internationalization Principles. ... 321

How Android Localization Works 322

Android Internationalization Strategies 327

Using Localization Utilities . .. 329

Summary. ... 330

Q&A . .. 331

Workshop 332
HOUR 20: Developing for Different Devices

333

Configuration Management for Android. ... 333

Summary. ... 343

Q&A . .. 343

Workshop 344

x

Teach Yourself Android Application Development in 24 Hours

ptg

HOUR 21: Diving Deeper into Android 347

Exploring More Core Android Features 347

Designing Advanced User Interfaces. .. 349

Working with Multimedia. ... 353

Working with 2D and 3D Graphics . .. 354

Personalizing Android Devices 356

Managing and Sharing Data . .. 358

Accessing Underlying Device Hardware 362

Summary. ... 364

Q&A . .. 364

Workshop 365
HOUR 22: Testing Android Applications

367

Testing Best Practices . .. 367

Maximizing Test Coverage . .. 371

Summary. ... 380

Q&A . .. 380

Workshop 381

Part V: Publishing Your Application

HOUR 23: Getting Ready to Publish 383

Understanding the Release Process . .. 383

Preparing the Release Candidate Build 385

Testing the Application Release Candidate . .. 386

Packaging and Signing an Application. ... 387

Testing the Signed Application Package 390

Summary. ... 392

Q&A . .. 392

Workshop 393

Contents

xi

ptg

HOUR 24: Publishing on the Android Market 395

Selling on the Android Market 395

Exploring Other Android Publishing Options . .. 402

Summary. ... 405

Q&A . .. 405

Workshop 406

Part VI: Appendixes

APPENDIX A: Configuring Your Android Development Environment 409

Development Machine Prerequisites . .. 409

Installing the Java Development Kit . .. 410

Installing the Eclipse IDE 410

Installing the Android SDK . .. 411

Installing and Configuring the Android Plug-in for Eclipse (ADT) 412

Upgrading the Android SDK . .. 413

Configuring Development Hardware for Device Debugging 413

APPENDIX B: Eclipse IDE Tips and Tricks 415

Creating New Classes and Methods . .. 415

Organizing Imports . .. 415

Documenting Code . .. 416

Using Auto-Complete. .. 416

Editing Code Efficiently 416

Renaming Almost Anything . .. 417

Formatting Code 418

Organizing Code. ... 418

Fun with Refactoring . .. 418

Resolving Mysterious Build Errors. ... 420

Creating Custom Log Filters . .. 420

Moving Tabs Around . .. 421

Integrating Source Control . .. 421

xii

Teach Yourself Android Application Development in 24 Hours

ptg

APPENDIX C: Supplementary Materials 423

Accessing the Publisher’s Website 423

Accessing the Authors’ Website 424

Contacting the Authors 425

Leveraging Online Android Resources. .. 425
Index

427

Contents

xiii

ptg

About the Authors
Lauren Darcey is responsible for the technical leadership and direction of a small soft-

ware company specializing in mobile technologies, including Android, iPhone, Blackberry,

Palm Pre, BREW, and J2ME. With more than two decades of experience in professional soft-

ware production, Lauren is a recognized authority in enterprise architecture and the devel-

opment of commercial-grade mobile applications. Lauren received a B.S. in Computer

Science from the University of California, Santa Cruz.

She spends her copious free time traveling the world with her geeky mobile-minded hus-

band and is an avid nature photographer. Her work has been published in books and news-

papers around the world. In South Africa, she dove with 4-meter-long great white sharks

and got stuck between a herd of rampaging hippopotami and an irritated bull elephant.

She’s been attacked by monkeys in Japan, gotten stuck in a ravine with two hungry lions in

Kenya, gotten thirsty in Egypt, narrowly avoided a coup d’état in Thailand, geocached her

way through the Swiss Alps, drank her way through the beer halls of Germany, slept in the

crumbling castles of Europe, and gotten her tongue stuck to an iceberg in Iceland (while

being watched by a herd of suspicious wild reindeer).

Shane Conder has extensive development experience and has focused his attention on

mobile and embedded development for the past decade. He has designed and developed

many commercial applications for BREW, J2ME, Palm, Windows Mobile, and Android—

some of which have been installed on millions of phones worldwide. Shane has written

extensively about the mobile industry and evaluated mobile development platforms on his

tech blogs and is well known within the blogosphere. Shane received a B.S. in Computer

Science from the University of California.

A self-admitted gadget freak, Shane always has the latest phone or laptop. He can often be

found fiddling with the latest technologies, such as Amazon Web Services, Android, iPhone,

Google App Engine, and other exciting, state-of-the-art technologies that activate the creative

part of his brain. He also enjoys traveling the world with his geeky wife, even if she did make

him dive with 4-meter-long great white sharks and almost get eaten by a lion in Kenya. He

admits that it was his fault they got attacked by monkeys in Japan, that he snickered and

whipped out his Android phone to take a picture when Laurie got her tongue stuck to that ice-

berg in Iceland, and that he still hasn’t learned his lesson about writing his own bio.

Other Publications by the Authors
The authors have also published Android Wireless Application Development, part of the

Addison-Wesley Developer’s Library series, as well as numerous online technical articles for

http://developer.com, http://informIT.com, and their own Android blog, http://android-

book.blogspot.com.

xiv

http://developer.com
http://androidbook.blogspot.com
http://androidbook.blogspot.com
http://informIT.com

ptg

Dedication
To grandparents the world over, especially those who are kind and generous, bake awesome

pecan pies, and like to watch America’s Most Wanted. You are not a bother but a blessing.

And if you don’t remember us telling you so, don’t you worry, because we’ll just tell you

again tomorrow.

Acknowledgments
This book would never have been written without the guidance and encouragement we

received from a number of very patient and supportive people, including our editorial

team, coworkers, friends, and family.

Throughout this project, our editorial team at Pearson (Sams Publishing) was top notch.

Special thanks go to Trina MacDonald, Olivia Basegio, and Betsy Harris. Our fantastic tech-

nical reviewer, Jonathan Jackson, helped us ensure that this book provides true, correct, and

high-quality technical information. Finally, we’d like to thank many of our friends and

family members who supported us during some difficult times, when we needed to make

our book deadlines despite a very serious family illness that required us to write the book

from Grandma’s kitchen table. (Yes, you can develop Android apps anywhere.) We would

like to specifically single out Liz Reid, Guy Grayson, the Lenz family (especially Thomas and

Patrick), Shoshi Brown and family (especially Jacob), the Badger family (especially Wi-Vi

and Nolia), Richard deCastongrene, Asher Siddiqui, Anthony Shaffer, Spencer Nassar, and

Mary Thompson for their support and encouragement.

xv

ptg

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Mark Taub

Editor-in-Chief

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at http://informit.com/register for convenient access

to any updates, downloads, or errata that might be available for this book.

xvi

http://informit.com/register

ptg

Introduction

The Android platform is packing some serious heat these days in the mobile marketplace

and gaining traction worldwide. The platform has seen numerous advancements in terms

of SDK functionality, handset availability, and feature set. A wide diversity of Android

handsets and devices are now shipping and (finally) in consumers’ hands—and we’re not

just talking about phones: Android has begun to ship on netbooks, Internet tablets (such as

the ARCHOS 5), ebook readers (like the Barnes & Noble nook), digital photo frames, and a

variety of other consumer electronics. There are even proof-of-concept appliances such as

an Android microwave and washer/dryer combo. (Hey, why not? See http://bit.ly/bGqmZp.)

Mobile operators and carriers are taking the platform seriously and spending gazillions on

ad campaigns for Android phones—like Verizon’s Droid campaign.

In the past year or so, the Android platform has transitioned from a “gearheads-only” plat-

form to providing some serious competition to more established platforms. (Yes, we’re talk-

ing about platforms such as the iPhone.)

But let’s not digress into an argument over whose platform is better so early, okay? Because,

honestly, you’re wasting your time if you think there’s one platform to rule them all. The

reality is, people the world over use different phones in different places (CDMA, GSM) and

for different reasons (price, availability, coverage quality, feature set, design, familiarity,

compatibility). There is no one-size-fits-all answer to this debate.

Having developed for just about every major mobile platform out there, we are keenly

aware of the benefits and drawbacks of each platform. We do not presume to claim that

one platform is better than another in general; each platform has distinct advantages over

the rest, and these advantages can be maximized.

The trick is to know which platform to use for a given project. Sometimes, the answer is to

use as many platforms as possible. Lately, we’ve been finding that the answer is the

Android platform: It’s inexpensive and easy to develop for, it’s available to millions of

potential users worldwide, and it has fewer limitations than other platforms.

Still, the Android platform is relatively young and has not yet reached its full-fledged poten-

tial. This means frequent SDK updates, an explosion of new devices on the market, and a

nearly full-time job keeping track of everything going on in the Android world.

In other words, it may be a bit of a bumpy ride, but there’s still time to jump on this band-

wagon, write some kick-butt applications, and make a name for yourself.

So let’s get to it.

http://bit.ly/bGqmZp

ptg

Who Should Read This Book?
There’s no reason anyone with an Android handset and a good idea for a mobile application

couldn’t put this book to use for fun and profit. Whether you’re a programmer looking to

break into mobile technology or an entrepreneur with a cool app idea, this book is for you.

We make very few assumptions about you as a reader of this book. You may have a basic

understanding of the Java programming language (understanding classes, methods, basic

inheritance, and so on), but Android makes a fantastic platform for learning Java as well.

We have avoided using any fancy or confusing Java in this book, so if you’re just getting

started with programming, you should be able to read the first few chapters of any intro-

ductory Java book or do an online tutorial and have enough Java knowledge to make it

through this book alive.

We do assume that you’re somewhat comfortable installing applications on a computer (for

example, Eclipse, the Java JDK, and the Android SDK) and tools and drivers (for USB access

to a phone), and we assume that you can navigate your way around an Android handset

well enough to launch applications and such. No wireless development experience is neces-

sary.

How This Book Is Structured
In 24 easy one-hour lessons, you’ll design and develop a fully functional network- and LBS

(Location-Based Services)-enabled Android application, complete with social features. Each

lesson builds on your knowledge of newly introduced Android concepts, and you’ll iterative-

ly improve your application from chapter to chapter.

This book is divided into six parts:

. Part I: Android Fundamentals

In Part I, you’ll get an introduction to Android, become familiar with the Android

SDK and tools, install the development tools, and write your first Android application.

Part I also introduces the design principles necessary to write Android applications,

including how Android applications are structured and configured, as well as how to

incorporate application resources such as strings, graphics, and user interface compo-

nents into your projects.

. Part II: Building an Application Framework

In Part II, you’ll begin developing an application framework that will serve as pri-

mary teaching-tool for the rest of the book. You’ll start by developing an animated

splash screen, followed by screens for main menu, settings, help, and scores. You’ll

2

Introduction

ptg

learn basic user interface design principles, how to collect input from the user, and

how to display dialogs to the user. Finally, you’ll implement the core application logic

of the game screen.

. Part III: Enhancing Your Application with Powerful Android Features

In Part III, you’ll dive deeper into the Android SDK, adding more specialized features

to the Been There, Done That! application. You’ll learn how to work with graphics

and the built-in camera, how to leverage LBS, how to network-enable your applica-

tion, and how to enhance your application with social features.

. Part IV: Adding Polish to Your Android Application

In Part IV, you’ll learn how to customize your application for different handsets,

screen sizes, and foreign languages. You’ll also learn about different ways to test

mobile applications.

. Part V: Publishing Your Application

In Part V, you’ll learn what you need to do to prepare for and publish your Android

applications to the Android Market.

. Part VI: Appendixes

In Part VI, you’ll find several helpful references for setting up your Android develop-

ment environment, using the Eclipse IDE, and accessing supplementary book materi-

als, like the book websites and downloadable source code.

What Is (and Isn’t) in This Book
While we specifically targeted Android SDK Version 2.1 in this book, many of the examples

were tested on handsets running a variety of Android SDK versions.

The Android SDK is updated very frequently (every few months). We kept this in mind when

choosing which features of the SDK to highlight to ensure maximum forward and backward

compatibility. When necessary, we point out areas where the Android SDK version affects

the features and functionality available to the developer.

This book is written in a beginner’s tutorial style. If you’re looking for an exhaustive refer-

ence on Android development, with cookbook-style code examples and a more thorough

examination of all the features of the Android platform, we recommend our other, more

advanced Android book, Android Wireless Application Development, which is part of the

Addison-Wesley Developer’s Library series.

What Is (and Isn’t) in This Book

3

ptg

What Development Environment Is Used?
The code in this book was written using the following development environments:

. Windows 7 and Mac OS X 10.6

. Eclipse Java IDE Version 3.5 (Galileo)

. Eclipse JDT plug-in and Web Tools Platform (WTP)

. Sun Java SE Development Kit (JDK) 6 Update 18

. Android SDK Version 2.1 (Primary target, developed and tested on a variety of SDK

versions)

. Various Android handsets (Android SDK 1.6, 2.0.1, and 2.1)

What Conventions Are Used in This Book?
This book presents several types of sidebars for special kinds of information:

. Did You Know? messages provide useful information or hints related to the current

text.

. By the Way messages provide additional information that might be interesting or rel-

evant.

. Watch Out! messages provide hints or tips about pitfalls that may be encountered

and how to avoid them.

This book uses the following code-related conventions:

. Code and programming terms are set in a monospace font.

. ➥ is used to signify that the code that follows should appear on the same line as the

preceding code.

. Exception handling and error checking are often removed from printed code samples

for clarity and to keep the book a reasonable length.

This book uses the following conventions for step-by-step instructions and explanations:

. The core application developed in this book is developed iteratively. Generally, this

means that the first time a new concept is explained, every item related to the new

concept is discussed in detail. As we move on to more advanced topics in later lessons,

4

Introduction

ptg

we assume that you have mastered some of the more rudimentary aspects of Android

development from previous chapters, and we do not repeat ourselves much. In some

cases, we instruct you to implement something in an early lesson and then help you

improve it in a later chapter.

. We assume that you’ll read the chapters of this book in order. As you progress

through the book, you’ll note that we do not spell out each and every step that must

be taken for each and every feature you implement to follow along in building the

core application example. For example, if three buttons must be implemented on a

screen, we walk you step-by-step through the implementation of the first button but

leave the implementation of the other two buttons as an exercise for you. In a later

chapter on a different topic, we might simply ask you to implement some buttons on

another screen.

. Where we tell you to navigate through menu options, we separate options using com-

mas. For example, if we told you to open a new document, we’d say “Select File, New

Document.”

What Conventions Are Used in This Book?

5

ptg

This page intentionally left blank

ptg

HOUR 1

Getting Started with Android

What You’ll Learn in This Hour:
. A brief history of the Android platform

. Familiarizing yourself with Eclipse

. Creating Android projects

. Running and debugging applications

Android is the first complete, open, and free mobile platform. Developers enjoy a compre-

hensive software development kit, with ample tools for developing powerful, feature-rich

applications. The platform is open source, relying on tried-and-true open standards devel-

opers will be familiar with. And best of all, there are no costly barriers to entry for devel-

opers: no required fees. (A modest fee is required to publish on third-party distribution

mechanisms such as the Android Market.) Android developers have numerous options for

distributing and commercializing their applications.

Introducing Android
To understand where Android fits in with other mobile technologies, let’s take a minute to

talk about how and why this platform came about.

Google and the Open Handset Alliance
In 2007, a group of handset manufacturers, wireless carriers, and software developers

(notably, Google) formed the Open Handset Alliance, with the goal of developing the next

generation of wireless platform. Unlike existing platforms, this new platform would be

nonproprietary and based on open standards, which would lead to lower development

costs and increased profits. Mobile software developers would also have unprecedented

access to the handset features, allowing for greater innovation.

ptg

8 HOUR 1: Getting Started with Android

As proprietary platforms such as RIM BlackBerry and Apple iPhone gained traction,

the mobile development community eagerly listened for news of this potential

game-changing platform.

Android Makes Its Entrance
In 2008, the Open Handset Alliance announced the Android platform and launched

a beta program for developers. Android went through the typical revisions of a new

platform. Several prerelease revisions of the Android Software Development Kit

(SDK) were released. The first Android handset (the T-Mobile G1) began shipping in

late 2008. Throughout 2009, more Android handsets and diverse types of devices

powered by Android reached world markets. As of this writing, there are more than

36 Android phones available from carriers around the world. This number does not

include the numerous Android tablet and e-book readers also available, nor the

dozens of upcoming devices already announced, nor the consumer electronics run-

ning Android. The rate of new Android devices reaching the world markets has con-

tinued to increase. In the United States, all major carriers now include Android

phones in their product lines.

Google has been a contributing member of the Open Handset Alliance from the

beginning. The company hosts the Android open source project as well as the

Android developer program at http://developer.android.com. This developer website

is your go-to site for downloading the Android SDK, getting the latest platform docu-

mentation, and browsing the Android developer forums. Google also runs the most

popular service for selling Android applications to end users: the Android Market.

The Android mascot is the little green robot shown in Figure 1.1.

FIGURE 1.1
The Android
mascot.

http://developer.android.com

ptg

Familiarizing Yourself with Eclipse 9

The Android Developer Challenge
Google has hosted several contests, called Developer Challenges, to encourage
developers to write Android applications. The first two rounds saw $10 million in
prize money awarded!

Cheap and Easy Development
If there’s one time when “cheap and easy” is a benefit, it’s with mobile develop-

ment. Wireless application development, with its ridiculously expensive compilers

and preferential developer programs, has been notoriously expensive to break into

compared to desktop development. Here, Android breaks the proprietary mold.

Unlike with other mobile platforms, there are virtually no costs to developing

Android applications.

The Android SDK and tools are freely available on the Android developer website,

http://developer.android.com. The freely available Eclipse program has become the

most popular integrated development environment (IDE) for Android application

development; there is also a powerful plug-in available on the Android developer

site for facilitating Android development.

So we’ve covered cheap; now let’s talk about why Android development is easy.

Because Android applications are written in Java, developers will be familiar with

many of the packages provided as part of the Android SDK, such as java.net.

Developers will be pleased to find that the learning curve for Android is quite rea-

sonable.

So let’s get started!

Familiarizing Yourself with Eclipse
Let’s begin by writing a simple Android “Hello, World” application that displays a

line of text to the user. As you do so, you will also be taking a tour through the

Eclipse environment. Specifically, you will learn about the features offered by the

Android Development Tools (ADT) plug-in for Eclipse. The ADT plug-in provides

functionality for developing, compiling, packaging, and deploying Android applica-

tions. Specifically, it provides the following:

. The Android project wizard, which generates all the required project files

. Android-specific resource editors

. The Android SDK and AVD (Android Virtual Devices) Manager

http://developer.android.com

ptg

Did you
Know?

Watch
Out!

10 HOUR 1: Getting Started with Android

. The Eclipse DDMS perspective for monitoring and debugging Android

applications

. Integration with Android LogCat logging

. Automated builds and application deployment to Android emulators and

handsets

. Application packaging and code signing tools for release deployment

Installing the Android SDK and Tools
You will find all the details of how to install and configure your computer for
Android application development in Appendix A, “Configuring Your Android
Development Environment.” You will need to install and configure Eclipse, the
Android SDK, and the ADT plug-in for Eclipse. You may also need to install the
USB drivers for any Android handsets you will be using for development.

Now let’s take some of these features for a spin.

Creating Android Projects
The Android Project Wizard creates all the required files for an Android application.

Open Eclipse and follow these steps to create a new project:

1. Choose File, New, Android Project or click the Android Project creator icon,

which looks like a folder (with the letter a and a plus sign:

) on the Eclipse toolbar.

The first time you try to create an Android Project, you might need to choose File,
New, Project and then select the Android, Android Project. After you have done this
once, it appears in the Eclipse project types and you can use the method
described in Step 1.

2. Choose a project name. In this case, name the project Droid1.

3. Choose a location for the project. Because this is a new project, select the

Create New Project in Workspace radio button. Check the Use Default Location

check box.

If you prefer to store your project files in another location, simply uncheck the
Use Default Location check box and browse to the directory of your choice.

ptg

Familiarizing Yourself with Eclipse 11

4. Select a build target for your application. For most applications, you want to

select the version of Android most appropriate for the devices used by your

target audience and the needs of your application. If you will be using the

Google add-ons (for example, Google Maps), be sure to choose the Google

APIs version for your target platform. For this example, the Android 2.1 (API

level 7) build target is sufficient.

5. Specify an application name. This name is what users will see. In this case,

call the application Droid #1.

6. Specify a package name, following standard package namespace conventions

for Java. Because all code in this book falls under the com.androidbook.*

namespace, use the package name com.androidbook.droid1.

7. Check the Create Activity check box. This will instruct the wizard to create a

default launch Activity class for the application. Call your activity

DroidActivity.

What Is an Activity?
An activity is a core component of the Android platform. Each activity represents a
task the application can do, often tied to a corresponding screen in the applica-
tion user interface.

The Droid #1 application has a single activity, called DroidActivity, which has a
single responsibility: to display a String to the user. We will talk more about
activities in Hour 3, “Building Android Applications.”

Your project settings will look as shown in Figure 1.2.

8. Confirm that the Min SDK Version field is correct. This field will be set to the

API level of the build target by default (Android 2.1 is API level 7). If you want

to support older versions of the Android SDK, you need to change this field.

However, in this case, we can leave it as its default value.

9. Click the Next button.

10. The Android project wizard allows you to create a test project in conjunction

with your Android application. For this example, a test project is unnecessary.

However, you can always add a test project later by clicking the Android Test

Project creator icon, which is to the right of the Android project wizard icon

(with the letter a, letter J and letter u:) on the Eclipse toolbar. Test projects

are discussed in detail in Hour 22, “Testing Android Applications.”

11. Click the Finish button.

ptg

12 HOUR 1: Getting Started with Android

Exploring the Android Project Files
You will now see a new Android project called Droid1 in the Eclipse File Explorer. In

addition to linking the appropriate Android SDK jar file, the following core files and

directories are created:

. AndroidManifest.xml—The central configuration file for the application.

. default.properties—A generated build file used by Eclipse and the Android

ADT plug-in. Do not edit this file.

. /src folder—Required folder for all source code.

. /src/com.androidbook.droid1/DroidActivity.java—Main entry point to this

application, named DroidActivity. This activity has been defined as the

default launch activity in the Android manifest file.

. /gen/com.androidbook.droid1/R.java—A generated resource management

source file. Do not edit this file.

. /assets folder—Required folder where uncompiled file resources can be includ-

ed in the project.

. /res folder—Required folder where all application resources are managed.

Application resources include animations, drawable graphics, layout files,

data-like strings and numbers, and raw files.

FIGURE 1.2
The Android
Project Wizard
in Eclipse.

ptg

Familiarizing Yourself with Eclipse 13

. /res/drawable—Application icon graphic resources are included in several dif-

ferent sizes.

. /res/layout/main.xml—Layout file used by DroidActivity to draw onscreen.

. /res/values/strings.xml—The path where string resources are defined.

You can also add existing Android projects to Eclipse by using the Android Project
Wizard. To do this, simply select Create Project from Existing Source instead of
the default Create New Project in Workspace in the New Android Project dialog
(refer to Figure 1.2). Several sample projects are provided in the /samples direc-
tory of the Android SDK, under the specific platform they support. For example,
the Android SDK sample projects are found in the directory
/platforms/android-xxx/samples (where xxx is the platform version number).

You can also select a third option: Create Project from Existing Sample, which will
do as it says. However, make sure you choose the build target first option to get
the list of sample projects you can create.

Editing Project Resources
By default, the Android manifest file resource editor is opened when you create a

new Android project. If you have clicked away from this screen to check out the var-

ious project files, simply double-click the AndroidManifest.xml file within your new

project to return to the Android manifest file resource editor (see Figure 1.3).

FIGURE 1.3
Editing an
Android
resource file in
Eclipse.

Did you
Know?

ptg

14 HOUR 1: Getting Started with Android

Editing the Android Manifest File
The Android manifest file is the central configuration file for an Android applica-

tion. The editor organizes the manifest information into a number of tabs:

. Manifest—This tab, shown in Figure 1.3, is used for general application-wide

settings such as the package name and application version information (used

for installation and upgrade purposes).

. Application—This tab is used to define application details such as the name

and icon the application displays, as well as the “guts” of the application, such

as what activities can be run (including the default launch DroidActivity)

and other functionality and services that the application provides.

. Permissions—This tab is used to define the application’s permissions. For

example, if the application requires the ability to read the contacts from the

phone, then it must register a Uses-Permission tag within the manifest, with

the name android.permission.READ_CONTACTS.

. Instrumentation—This tab is used for unit testing, using the various instru-

mentation classes available within the Android SDK.

. AndroidManifest.xml—This tab provides a simple XML editor to edit the

manifest file directly.

If you switch to the AndroidManifest.xml tab, your manifest file will look something

like this:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest

xmlns:android=”http://schemas.android.com/apk/res/android”
package=”com.androidbook.droid1”
android:versionCode=”1”
android:versionName=”1.0”>
<application

android:icon=”@drawable/icon”
android:label=”@string/app_name”>
<activity

android:name=”.DroidActivity”
android:label=”@string/app_name”>
<intent-filter>

<action
android:name=”android.intent.action.MAIN” />

<category
android:name=”android.intent.category.LAUNCHER” />

</intent-filter>
</activity>

</application>
<uses-sdk

android:minSdkVersion=”7” />
</manifest>

ptg

▼

Did you
Know?

Familiarizing Yourself with Eclipse 15

Because all Android resource files, including the Android manifest file, are simply
XML files, you are always able to edit the raw resource files instead of using the
resource editors. You can create a new Android XML file by clicking the Android
XML creator icon, which looks like a file (with the letter a and a plus sign:)
on the Eclipse toolbar.

Try It Yourself

Edit the Android Manifest File
Now let’s edit the Android manifest file. One setting you’re going to want to know

about is the debuggable attribute. You will not be able to debug your application

until you set this value, so follow these steps:

1. Open the AndroidManifest.xml file in the resource editor.

2. Navigate to the Application tab.

3. Pull down the drop-down for the debuggable attribute and choose true.

4. Save the manifest file.

If you switch to the AndroidManifest.xml tab and look through the XML, you will

notice that the application tag now has the debuggable attribute:

android:debuggable=”true”

Editing Other Resource Files
Most Android application resources are stored under the /res subdirectory of the

project. The following subdirectories are also available:

. /drawable-ldpi, /drawable-hdpi, /drawable-mdpi—These subdirectories

store graphics and drawable resource files for different screen densities and

resolutions. If you browse through these directories using the Eclipse Project

Explorer, you will find the icon.png graphics file in each one; this is your

application’s icon. You’ll learn more about the difference between these direc-

tories in Hour 20, “Developing for Different Devices.”

. /layout—This subdirectory stores user interface layout files. Within this subdi-

rectory you will find the main.xml screen layout file that defines the user

interface for the default activity.

▲

ptg

▼

16 HOUR 1: Getting Started with Android

. /values—This subdirectory organizes the various types of resources, such as

text strings, color values, and other primitive types. Here you find the

strings.xml resource file, which contains all the resource strings used by the

application.

If you double-click on any of resource files, the resource editor will launch.

Remember, you can always edit the XML directly.

Try It Yourself

Edit a String Resource
If you inspect the main.xml layout file of the project, you will notice that it displays

a simple layout with a single TextView control. This user interface control simply

displays a string. In this case, the string displayed is defined in the string resource

called @string/hello.

To edit the string resource called @string/hello, using the string resource editor,

follow these steps:

1. Open the strings.xml file in the resource editor.

2. Select the String called hello and note the name (hello) and value (Hello

World, DroidActivity!) shown in the resource editor.

3. Within the Value field, change the text to Hello, Dave.

4. Save the file.

If you switch to the strings.xml tab and look through the raw XML, you will notice

that two string elements are defined within a <resources> block:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<string name=”hello”>Hello, Dave</string>
<string name=”app_name”>Droid #1</string>

</resources>

The first is the string @string/hello. The second is @string/app_name, which con-

tains the name label for the application. If you look at the Android manifest file

again, you will see @string/app_name used in the application configuration.

We will talk much more about project resources in Hour 4, “Managing Application

Resources.” For now, let’s move on to compiling and running the application.

▲

ptg

Running and Debugging Applications 17

Running and Debugging Applications
To build and debug an Android application, you must first configure your project for

debugging. The ADT plug-in enables you to do this entirely within the Eclipse devel-

opment environment. Specifically, you need to do the following:

. Configure an Android Virtual Device (AVD) for the emulator

. Create a debug configuration for your project

. Build the Android project and launch the debug configuration

When you have completed each of these tasks, Eclipse will attach its debugger to

the Android emulator (or handset), and you are free to debug the application as

needed.

Managing Android Virtual Devices
To run an application in the Android emulator, you must configure an Android

Virtual Device (AVD). The AVD profile describes the type of device you want the

emulator to simulate, including which Android platform to support. You can specify

different screen sizes and orientations, and you can specify whether the emulator

has an SD card and, if so, its capacity. In this case, an AVD for the default installa-

tion of Android 2.1 will suffice. Here are the steps for creating a basic AVD:

1. Launch the Android SDK and AVD Manager from within Eclipse by clicking

on the little green Android icon with the arrow () on the toolbar. You can

also launch the manager by selecting Window, Android SDK and AVD

Manager in Eclipse.

2. Click the Virtual Devices menu item on the left menu. The configured AVDs

will be displayed as a list.

3. Click the New button to create a new AVD.

4. Choose a name for the AVD. Because you are going to take all the defaults,

name this AVD VanillaAVD.

5. Choose a build target. For example, to support Android 2.1, choose the item

build target called Android 2.1 – API Level 7 from the drop-down.

6. Choose an SD card capacity, in either kibibytes or mibibytes. This SD card

image will take up space on your hard drive, so choose something reasonable,

such as a 1024MiB or less. (The minimum is 9MiB, but keep in mind that the

full size of the SD card is stored on your machine.)

ptg

18 HOUR 1: Getting Started with Android

FIGURE 1.4
Creating a new
AVD in Eclipse.

Creating Debug and Run Configurations in Eclipse
You are almost ready to launch your application. You have one last task remaining:

You need to create a Debug configuration (or a Run configuration) for your project.

To do this, take the following steps:

1. In Eclipse, choose Run, Debug Configurations.

2. Double-click the Android Application item to create a new entry.

3. Choose that new entry, called New_configuration.

By the
Way

7. Choose a skin. This option controls the different visual looks of the emulator.

In this case, go with the default HVGA screen, which will display in portrait

mode.

Your project settings should look as shown in Figure 1.4.

8. Click the Create AVD button and wait for the operation to complete.

9. Click Finish.

Because the Android Virtual Devices Manager formats the memory allocated for
SD card images, creating AVDs with SD cards may take a few moments.

ptg

By the
Way

Did you
Know?

Running and Debugging Applications 19

4. Change the name of the entry to DroidDebug.

5. Choose the Droid1 project by clicking the Browse button.

6. On the Target tab, check the box next to the AVD you created.

If you choose Manual on the Target tab, instead of choosing Automatic and select-
ing an AVD, you will be prompted to choose a target each time you launch this
configuration. This is useful when you’re testing on a variety of handsets and emu-
lator configurations. See “Launching Android Applications on a Handset,” later in
this hour, for more information.

7. Apply your changes by clicking the Apply button. Your Debug Configurations

dialog should look as shown in Figure 1.5.

FIGURE 1.5
The DroidDebug
debug configura-
tion in Eclipse.

Launching Android Applications Using the
Emulator
It’s launch time, and your droid is ready to go! To launch the application, you can

simply click the Debug button from within the Launch Configuration screen, or you

can do it from the project by clicking the little green bug icon () on the Eclipse

toolbar. Then select DroidDebug Debug Configuration from the list.

The first time you try to select DroidDebug debug configuration from the little
green bug drop-down, you have to navigate through the configuration manager.
Future attempts will show this configuration for convenient use under the bug
drop-down.

ptg

20 HOUR 1: Getting Started with Android

Now the Eclipse debugger is attached, and your application runs, as shown in

Figure 1.7.

FIGURE 1.6
An Android emu-
lator launching
(Screen Locked
view).

FIGURE 1.7
The Droid #1
Android applica-
tion running in
the emulator.

After you click the Debug button, the emulator screen will launch. This can take

some time, so be patient. You may need to click the Menu button on the emulator

when you come to the Screen Locked view (see Figure 1.6).

ptg

By the
Way

Running and Debugging Applications 21

As you can see, the application is very simple. It displays a single TextView control,

with a line of text. The application does nothing else.

Debugging Android Applications Using DDMS
In addition to the normal Debug perspective built into Eclipse for stepping through

code and debugging, the ADT plug-in adds the DDMS perspective. While you have

the application running, take a quick look at this perspective in Eclipse. You can get

to the DDMS perspective (see Figure 1.8) by clicking the Android DDMS icon ()

in the top-right corner of Eclipse. To switch back to the Eclipse Project Explorer, sim-

ply choose the Java perspective from the top-right corner of Eclipse.

If the DDMS perspective is not visible in Eclipse, you can add it to your workspace
by clicking the Open Perspective button in the top right next to the available per-
spectives (or, alternately, choose Window, Open Perspective). To see a complete
list of available perspectives, select the Other option from the Open Perspective
drop-down menu. Select the DDMS perspective and press OK.

FIGURE 1.8
The DDMS per-
spective in
Eclipse.

The DDMS perspective can be used to monitor application processes, as well as

interact with the emulator. You can simulate voice calls and send SMS messages to

the emulator. You can send a mock location fix to the emulator to mimic location-

based services. You will learn more about DDMS and the other tools available to

Android developers in Hour 2, “Mastering the Android Development Tools.”

ptg

22 HOUR 1: Getting Started with Android

The LogCat logging tool is displayed on both the DDMS perspective and the Debug

Perspective. This tool displays logging information from the emulator or the hand-

set, if a handset is plugged in.

Launching Android Applications on a Handset
It’s time to load your application onto a real handset. To do this, you need to plug a

handset into your computer, using the USB data cable.

To ensure that you debug using the correct settings, follow these steps:

1. In Eclipse, choose Run, Debug Configurations.

2. Double-click DroidDebug Debug Configuration.

3. On the Target tab, set Deployment Target Selection Mode to Manual. You can

always change it back to Automatic later, but choosing Manual will force you

to choose whether to debug within the emulator (and choose an AVD) or a

device, if one is plugged in, whenever you choose to debug.

4. Apply your changes by clicking the Apply button.

5. Plug an Android device into your development computer, using a USB cable.

6. Click the Debug button within Eclipse.

A dialog (Figure 1.9) appears, showing all available configurations for run-

ning and debugging your application. All physical devices are listed, as are

existing emulators that are running. You can also launch new emulator

instances by using other AVDs you have created.

FIGURE 1.9
The Eclipse dia-
log for choosing
an application
deployment
target.

ptg

23Q&A

7. Double-click one of the running Android devices. There should be one listed

for each handset plugged into the machine, in addition to one for each emu-

lator instance running. If you do not see the handset listed, check your cables

and make sure you installed the appropriate drivers, as explained in

Appendix A.

Eclipse now installs the Android application on the handset, attaches a debugger,

and runs the application. Your handset now shows a screen very similar to the one

you saw in the emulator. If you look at the DDMS perspective in Eclipse, you see

that logging information is available, and many features of the DDMS perspective

work with real handsets as well as the emulator.

New to Eclipse?
If you’re still learning the ropes of the Eclipse development environment, now is a
great time to check out Appendix B, “Eclipse IDE Tips and Tricks.”

Summary
Congratulations! You are now an Android developer. You are starting to learn your

way around the Eclipse development environment. You created your first Android

project. You reviewed and compiled working Android code. Finally, you ran your

newly created Android application on the Android emulator as well as on a real

Android device.

Q&A
Q. What programming languages are supported for Android development?

A. Right now, Java is the only programming language fully supported for

Android development. Other languages, such as C++, may be added in the

future. Although applications must be Java, C and C++ can be used for certain

routines that need higher performance by using the Android NDK. For more

information about using the Android NDK, see http://developer.android.com/

sdk/ndk.

http://developer.android.com/sdk/ndk
http://developer.android.com/sdk/ndk

ptg

24 HOUR 1: Getting Started with Android

Q. Why would I want to create AVDs for Android 1.1 (or any older firmware)
when newer versions of the Android SDK are available?

A. Although handset firmware may be updated over-the-air, not every Android

device will support every future firmware version. Check the firmware avail-

able on each of your target handsets carefully before choosing which version

your application will support and be tested on.

Q. The Android resource editors can be cumbersome for entering large
amounts of data, such as many string resources. Is there any way around
this?

A. Android project files, such as the Android manifest, layout files, and resource

values (for example, /res/values/strings.xml), are stored in specially for-

matted XML files. You can edit these files manually by clicking on the XML

tab of the resource editor. We will talk more about the XML formats in Hour 4.

Workshop

Quiz
1. Who are the members of the Open Handset Alliance?

A. Handset manufacturers

B. Wireless operators and carriers

C. Mobile software developers

D. All of the above

2. True or False: You can simply launch the Android emulator to use default set-

tings right after the SDK is installed.

3. What is the most popular IDE for Android development?

A. Eclipse

B. IntelliJ

C. Emacs

4. True or False: You can use Eclipse for handset debugging.

ptg

25Workshop

Answers
1. D. The Open Handset Alliance is a business alliance that represents all levels

of the handset supply chain.

2. False. You must first create an AVD.

3. A. Eclipse is the most popular IDE for Android development. Other IDEs can

be used, but they will not enable you to use the ADT plug-in that is integrated

with Eclipse.

4. True. Eclipse supports debugging within the emulator and on the handset.

Exercises
1. Visit http://developer.android.com and take a look around. Check out the

online Developer’s Guide and reference materials. Check out the Community

tab and considering signing up for the Android Beginners and Android

Developers Google Groups.

2. Add more text to the Droid #1 application. To do this, first add another

String resource to the strings.xml resource file and save this file. Next, use

the layout resource editor to modify the main.xml layout file to add a second

TextView control. Set the text attribute of the TextView control to your newly

created String resource. Finally, rerun the application in the emulator to see

the results.

3. Add to your Eclipse workspace one of the Android sample projects provided

with the Android SDK. Browse through the project files and then create a run

configuration and launch the sample application in the emulator.

http://developer.android.com

ptg

This page intentionally left blank

ptg

HOUR 2

Mastering the Android
Development Tools

What You’ll Learn in This Hour:
. Using the Android documentation

. Debugging applications with DDMS

. Working with the Android Emulator

. Using the Android Debug Bridge (ADB)

. Working with Android virtual devices

Android developers are lucky to have more than a dozen development tools at their dis-

posal to help facilitate the design of quality applications. Understanding what tools are

available and what they can be used for is a task best done early in the Android learning

process, so that when you are faced with a problem, you have some clue as to which utili-

ty might be able to help you find a solution. The Android development tools are found in

the /tools subdirectory of the Android SDK installation. During this hour, we walk

through a number of the most important tools available for use with Android. This infor-

mation will help you develop Android applications faster and with fewer roadblocks.

Using the Android Documentation
Although it is not a tool, per se, the Android documentation is a key resource for Android

developers. An HTML version of the Android documentation is provided in the /docs sub-

folder of the Android SDK documentation, and this should always be your first stop when

you encounter a problem. You can also access the latest help documentation online at the

Android Developer website, http://developer.android.com.

The Android documentation is divided into six sections (see Figure 2.1):

http://developer.android.com

ptg

28 HOUR 2: Mastering the Android Development Tools

. SDK—This tab provides important information about the SDK version

installed on your machine. One of the most important features of this tab is

the release notes, which describe any known issues for the specific installation.

This information is also useful if the online help has been upgraded but you

want to develop to an older version of the SDK.

. Dev Guide—This tab links to the Android Developer’s Guide, which includes a

number of FAQs for developers, as well as step-by-step examples and a useful

glossary of Android terminology for those new to the platform.

. Reference—This tab includes a searchable package and class index of all

Android APIs provided as part of the Android SDK.

. Blog—This tab links to the official Android developer blog. Check here for the

latest news and announcements about the Android platform. This is a great

place to find how-to examples, learn how to optimize Android applications,

and hear about new SDK releases and Android Developer Challenges.

. Videos—This tab, which is available online only, is your resource for Android

training videos. Here, you’ll find videos about the Android platform, developer

tips, and the Google I/O conference sessions.

. Community—This tab is your gateway to the Android developer forums.

There are a number of Google groups you can join, depending on your

interests.

FIGURE 2.1
Android develop-
er documenta-
tion (online
version).

ptg

Debugging Applications with DDMS 29

Now is a good time to get to know your way around the Android SDK documen-

tation. First, try the local documentation and then check out the online

documentation.

Debugging Applications with DDMS
The Dalvik Debug Monitor Service (DDMS) is a debugging utility that is integrated

into Eclipse through the DDMS perspective. The DDMS perspective provides a num-

ber of useful features for interacting with emulators and handsets (see Figure 2.2).

FIGURE 2.2
The DDMS per-
spective, with
one emulator
and one
Android device
connected.

The features of DDMS are roughly divided into five functional areas:

. Task management

. File management

. Emulator interaction

. Logging

. Screen captures

ptg

Did you
Know?

30 HOUR 2: Mastering the Android Development Tools

DDMS and the DDMS perspective are essential debugging tools. Now let’s take a

look at how to use these features in a bit more detail.

The DDMS tool can be launched separately from Eclipse. You can find it in the
Android SDK /tools directory.

Managing Tasks
The top-left corner of the DDMS lists the emulators and handsets currently connect-

ed. You can select individual instances and inspect processes and threads. You can

inspect threads by clicking on the device process you are interested in—for example,

com.androidbook.droid1—and clicking the Update Threads button (), as shown

in Figure 2.3. You can also prompt garbage collection on a process and then view

the heap updates by clicking the green cylinder button (). Finally, you can stop

a process by clicking the button that resembles a stop sign ().

FIGURE 2.3
Using DDMS to
examine thread
activity for the
Droid1 applica-
tion.

Debugging from the DDMS Perspective
Within the DDMS perspective, you can choose a specific process on an emulator
or a handset and then click the little green bug () to attach a debugger to that
process. You need to have the source code in your Eclipse workspace for this to
work properly. This works only in Eclipse, not in the standalone version of DDMS.

ptg

Debugging Applications with DDMS 31

Browsing the Android File System
You can use the DDMS File Explorer to browse files and directories on the emulator

or a device (see Figure 2.4). You can copy files between the Android file system and

your development machine by using the push () and pull () icons.

FIGURE 2.4
Using the
DDMS File
Explorer to
browse system
fonts on the
handset.

You can also delete files and directories by using the minus button () or just

pressing Delete. There is no confirmation for this Delete operation, nor can it be

undone.

Interacting with Emulators
DDMS can send a number of events, such as simulated calls, SMS messages, and

location coordinates, to specific emulator instances. These features are found under

the Emulator Control tab in DDMS. These events are all “one way,” meaning that

they can be initiated from DDMS, not from the emulator to DDMS.

These features work for emulators only, not for handsets. For handsets, you must
use real calls and real messages.

Simulating Incoming Calls to the Emulator
You can simulate incoming voice calls by using the DDMS Emulator Control tab

(see Figure 2.5). This is not a real call; no data (voice or otherwise) is transmitted

between the caller and the receiver.

By the
Way

ptg

▼

32 HOUR 2: Mastering the Android Development Tools

FIGURE 2.5
Using the
DDMS Emulator
Control tab (left)
to place a call
to the emulator
(right).

Try It Yourself

Simulate an Incoming Call to an Emulator
To simulate an incoming call to an emulator running on your machine, follow these

steps:

1. In DDMS, choose the emulator you want to call.

2. On the Emulator Control tab, input the incoming phone number (for exam-

ple, 5551212) in the Telephony Actions section.

3. Select the Voice radio button.

4. Click the Call button.

5. In the emulator, you should see an incoming call. Answer the call by clicking

the Send button in the emulator.

6. End the call at any time by clicking the End button in the emulator or by

clicking the Hang Up button on the DDMS Emulator Control tab.▲

ptg

▼

Debugging Applications with DDMS 33

Simulating Incoming SMS Messages to the Emulator
You can simulate incoming SMS messages by using the DDMS Emulator DDMS (see

Figure 2.6). You send an SMS much as you initiate a voice call.

FIGURE 2.6
Using the
DDMS Emulator
Control tab (left)
to send an SMS
message to the
emulator (right).

Try It Yourself

Send an SMS to the Emulator
To send an SMS message to an emulator running on your machine, follow these

steps:

1. In DDMS, choose the emulator you want a send an SMS to.

2. On the Emulator Control tab, input the Incoming phone number (for exam-

ple, 5551212) in the Telephony Actions section.

3. Select the SMS radio button.

4. Type an SMS message.

5. Click the Send button. In the emulator, you should see an incoming SMS noti-

fication.

Taking Screenshots of the Emulator or Handset
One feature that can be particularly useful for debugging both handsets and emula-

tors is the ability to take screenshots of the current screen (see Figure 2.7).

▲

ptg

▼

34 HOUR 2: Mastering the Android Development Tools

FIGURE 2.7
Using the
DDMS Screen
Capture button
to take a
screenshot of
the handset.

Try It Yourself

Take a Screen Capture
The screenshot feature is particularly useful when used with true handsets. To take a

screen capture, follow these steps:

1. In DDMS, choose the device (or emulator) you want a screenshot of.

2. On that device or emulator, make sure you have the screen you want.

Navigate to it, if necessary.

3. Choose the multicolored square picture icon () to take a screen capture.

This launches a capture screen dialog.

4. Within the capture screen, click Save to save the screenshot to your local hard

drive.▲

ptg

Working with the Android Emulator 35

Viewing Log Information
The LogCat logging utility that is integrated into DDMS allows you to view the

Android logging console. You may have noted the LogCat logging tab, with its diag-

nostic output, in many of the figures shown so far in this chapter. We will talk more

about how to implement your own custom application logging in Hour 3, “Building

Android Applications.”

Filtering Log Information
Eclipse has the ability to filter logs by log severity. You can also create custom log
filters by using tags. For more information on how to do this, see Appendix B,
“Eclipse IDE Tips and Tricks.”

Working with the Android Emulator
The Android emulator is probably the most powerful tool at a developer’s disposal.

It is important for developers to learn to use the emulator and understand its limita-

tions.

The Android emulator is integrated with Eclipse, using the ADT plug-in for the

Eclipse IDE.

Emulator Limitations
The Android emulator is a convenient tool, but it has a number of limitations:
. The emulator is not a device. It simulates general handset behavior, not spe-

cific hardware implementations.
. Sensor data, such as satellite location information, battery and power set-

tings, and network connectivity, are all simulated using your computer.
. Peripherals such as camera hardware are not fully functional.
. Phone calls cannot be placed or received but are simulated. SMS messages

are also simulated and do not use a real network.
. No USB or Bluetooth support is available.

Using Android emulator is not a substitute for testing on a true target handset or
device.

ptg

▼

36 HOUR 2: Mastering the Android Development Tools

Providing Input to the Emulator
As a developer, you can provide input to the emulator in a number of ways:

. Use your computer mouse to click, scroll, and drag items (for example, side

volume controls) onscreen as well as on the emulator skin.

. Use your computer keyboard to input text into controls.

. Use your mouse to simulate individual finger presses on the soft keyboard or

physical emulator keyboard.

. Use a number of emulator keyboard commands to control specific emulator

states.

Try It Yourself
Try out some of the methods of interacting with the emulator:

1. In Eclipse, launch the Droid1 application you created in Hour 1, “Getting

Started with Android.”

2. While your application is running, press the control-F11 and control-F12 keys

to toggle the emulator orientation. Note how your application redraws the

simple screen in portrait and landscape modes.

3. Press Alt+Enter to enter full screen mode with the emulator. Then press

Alt+Enter again to return to normal mode.

Many useful commands are available. For an exhaustive list, see the official emula-

tor documentation that was installed with the Android SDK documentation and is

also available online, at http://developer.android.com/guide/developing/tools/

emulator.html.

Exploring the Android System
If you’re not already familiar with Android devices, now is a good time to learn your

way around the Android system as users see it. Table 2.1 lists some important fea-

tures of Android.

▲

http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/emulator.html

ptg

Working with the Android Emulator 37

TABLE 2.1 Android System Screens and Features

Feature Description Appearance

Home screen Default screen.

This is a common location for
app widgets and live folders.

Dialer application Built-in application for making
and receiving phone calls.

Note that the emulator has
limited phone features.

Messaging application Built-in application for sending
and receiving SMS messages.

Note that the emulator has limited
messaging features.

Browser application Built-in web browser.

Note that the emulator has an
Internet connection, provided
that your machine has one.

Contacts application Database of contact information.

Application sliding drawer Shows all installed applications.

From the Home screen, pull the
gray sliding drawer tab to see all
installed applications.

ptg

38 HOUR 2: Mastering the Android Development Tools

Settings application Built-in application to configure
a wide variety of “phone” settings
for the emulator, such as application
management, sound and display
settings, and localization.

Dev Tools application Built-in application to configure
configure development
tool settings.

Using Emulator Skins
Emulator features such as screen size, screen orientation, and whether the emulator

has a hardware or soft keyboard are dictated by the emulator skin. The Android SDK

supports a number of different skins which emulate various handset screen resolutions

(the default being HVGA). The specific skins available depends on the target build

platform. Determining the appropriate skin is part of the AVD configuration process.

Using SD Card Images with the Emulator
To save data with the emulator, there must be an SD card image configured. For

example, you must have a properly configured SD card image to save media files

like camera graphics and sound files to the emulator.

The most convenient way to create SD card images for use with the emulator is to

create them as part of the AVD process, as you did in Hour 1. SD card images should

be at least 9 MiB.

Using Other Android Tools
Although we’ve already covered the most important tools, a number of other

special-purpose utilities are included with the Android SDK:

. Android Hierarchy Viewer—Allows developers to inspect application

user interface components such as View Properties while the application is

running.

TABLE 2.1 continued

Feature Description Appearance

ptg

39Summary

. Draw 9-Patch tool—Helps developers design stretchable PNG files.

. AIDL Compiler—Helps developers create remote interfaces to facilitate inter-

process communication (IPC) on the Android platform.

. mksdcard command-line utility—Allows developers to create stand-alone SD

card images for use within AVDs and the emulator.

Developing Android Applications Without Eclipse
Eclipse is the preferred development environment for Android, but it is not
required for development. The ADT plug-in for Eclipse provides a convenient entry
point for many of the underlying development tools for creating, debugging, pack-
aging, and signing Android applications.

Developers who do not use Eclipse or require some of the more powerful debug-
ging features not available in the Eclipse ADT plug-in can access these underlying
tools directly from the command line. Tools such as the following are found in the
/tools directory of the Android SDK:
. android—Creates Android project files and to manage AVDs.
. aapt (Android Asset Packaging Tool)—Packages Android project files into

.apk files for installation on the emulator and handset.
. ddms (Dalvik Debug Monitor Service)—Has a user interface of its own, which

resembles the Eclipse DDMS perspective.
. adb (Android Debug Bridge)—Has a command-line interface for interacting

with the emulator and the device.

Summary
The Android SDK ships with a number of powerful tools to help with common

Android development tasks. The Android documentation is an essential reference for

developers. The DDMS debugging tool, which is integrated into the Eclipse develop-

ment environment, is useful for monitoring emulators and devices. The Android

emulator can be used for running and debugging Android applications virtually,

without the need for an actual device. There are also a number of other tools for

interacting with handsets and emulators at the command-line level, as well as spe-

cialized utilities for designing Android application user interfaces and graphics, as

well as packaging applications.

ptg

40 HOUR 2: Mastering the Android Development Tools

Q&A
Q. Is the Android documentation installed with the Android SDK the same as

the documentation found at http://developer.android.com?

A. No. The documentation installed with the SDK was “frozen” at the time the

SDK was released, which means it is more specific to the version of the

Android SDK you installed. The online documentation will always be the lat-

est version of the Android SDK. We recommend using the online documenta-

tion, unless you are working offline or have a slow Internet connection, in

which case the local SDK documentation will suffice.

Q. Do the different emulator skins have different features?

A. Yes. The emulator skins correspond to different screen sizes and orientations.

They also have keypads and buttons. Some have hardware keyboards, and

others rely on soft keyboard support.

Q. Is testing your application on the emulator alone sufficient?

A. No. The Android emulator simulates the functionality of a real device and can

be a big time- and cost-saving tool for Android projects. It is a convenient tool

for testing, but it can only pretend at real device behavior. The emulator can-

not actually determine your real location or make a phone call. Also, the

emulator is a generic device and does not attempt to simulate any quirky

details of a specific handset. Just because your application runs fine on the

emulator does not guarantee that it will work on the device.

Workshop

Quiz
1. Which features are available in the DDMS perspective?

A. Taking screenshots of emulator and handset screens

B. Browsing the file system of the emulator or handset

C. Monitoring thread and heap information on the Android system

D. Stopping processes

E. Simulating incoming phone calls and SMS messages to emulators

F. All of the above

http://developer.android.com

ptg

41Workshop

2. True or False: You must use the Android emulator for debugging.

3. Which target platforms can Android applications be written for?

4. True or False: The Android emulator is a generic device that supports only one

screen configuration.

Answers
1. F. All of the above. The DDMS perspective can be used to monitor, browse, and

interact with emulators and handsets in a variety of ways.

2. False. The Android emulator is useful for debugging, but you can also connect

the debugger to an actual device and debug directly.

3. There are a number of target platforms available and more are added with

each new SDK release. Some important platform targets include Android 1.1,

Android 1.5, Android 1.6, Android 2.0., Android 2.0.1, and Android 2.1.

Targets higher than Android 1.1 can include the Google APIs, if desired. These

targets map to the AVD profiles you must create in order to use the Android

emulator.

4. False. The Android emulator is a generic device, but it can support several dif-

ferent skins. For a complete list of skins supported, see the Android SDK and

AVD Manager in Eclipse.

Exercises
1. Launch the Android emulator and browse the settings available. Change the

language settings. Uninstall an application.

2. Launch the Android emulator and customize your home screen. Change the

wallpaper. Install an AppWidget. Get familiar with how the emulator tries to

mimic a real handset. Note the limitations, such as how the dialer works.

3. Try launching the Hierarchy Viewer tool with the Droid1 project you created

in Hour 1. Note how you can drill down to see the TextView controls you

created.

ptg

This page intentionally left blank

ptg

HOUR 3

Building Android Applications

What You’ll Learn in This Hour:
. Designing a typical Android application

. Using the application context

. Working with activities, intents, and dialogs

. Logging application information

Every platform technology uses different terminology to describe its application compo-

nents. The three most important classes on the Android platform are Context, Activity,

and Intent. While there are other, more advanced, components developers can imple-

ment, these three components form the building blocks for each and every Android

application. In this hour, we focus on understanding how Android applications are put

together. We also take a look at some handy utility classes that can help developers debug

applications.

Designing a Typical Android Application
An Android application is a collection of tasks, each of which is called an activity. Each

activity within an application has a unique purpose and user interface. To understand this

more fully, imagine a theoretical game application called Chippy’s Revenge.

Designing Application Features
The design of the Chippy’s Revenge game is simple. It has five screens:

. Splash—This screen acts as a startup screen, with the game logo and version. It

might also play some music.

. Menu—On this screen, a user can choose from among several options, including

playing the game, viewing the scores, and reading the help text.

ptg

By the
Way

44 HOUR 3: Building Android Applications

. Play—This screen is where game play actually takes place.

. Scores—This screen displays the highest scores for the game (including high

scores from other players), providing players with a challenge to do better.

. Help—This screen displays instructions for how to play the game, including

controls, goals, scoring methods, tips, and tricks.

Starting to sound familiar? This is the prototypical design of just about any mobile

application, game or otherwise, on any platform.

Certainly, you are free to implement any kind of user interface you desire. There
are no real user interface requirements on the Android platform, other than that
the application must be stable, responsive, and play nice with the rest of the
Android system. That said, the best and most popular applications leverage the
users’ existing experience with user interfaces. It’s best to improve upon those
features, when necessary, rather than reinvent them, so you don’t force the user
to exert time and effort to learn your application in order to use it properly.

Determining Application Activity Requirements
You need to implement five activity classes, one for each feature of the game:

. SplashActivity—This activity serves as the default activity to launch. It sim-

ply displays a layout (maybe just a big graphic), plays music for several sec-

onds, and then launches MenuActivity.

. MenuActivity—This activity is pretty straightforward. Its layout has several

buttons, each corresponding to a feature of the application. The onClick()

handlers for each button trigger cause the associated activity to launch.

. PlayActivity—The real application guts are implemented here. This activity

needs to draw stuff onscreen, handle various types of user input, keep score,

and generally follow whatever game dynamics the developer wants to sup-

port.

. ScoresActivity—This activity is about as simple as SplashActivity. It does

little more than load a bunch of scoring information into a TextView control

within its layout.

. HelpActivity—This activity is almost identical to ScoresActivity, except

that instead of displaying scores, it displays help text. Its TextView control

might possibly scroll.

ptg

Designing a Typical Android Application 45

Each activity class should have its own corresponding layout file stored in the appli-

cation resources. You could use a single layout file for ScoresActivity and

HelpActivity, but it’s not necessary. If you did, though, you would simply create a

single layout for both and set the image in the background and the text in the

TextView control at runtime, instead of within the layout file.

Figure 3.1 shows the resulting design for your game, Chippy’s Revenge Version 0.0.1

for Android.

FIGURE 3.1
Application
design of a sim-
ple Android
application
(Chippy’s
Revenge).

USER LAUNCHES
APPLICATION

Startup/
Splash
Activity

Play
Activity

Help
Activity

Scores
Activity

Menu
Activity

5 Second Timer
Then Launch
Menu Activity

Default Launch
Activity Started

Play Button onClick()
Launches Play Activity

Score Button onClick()
Launches Scores Activity

Help Button onClick()
Launches Help Activity

Implementing Application Functionality
Now that you understand how a typical Android application might be designed,

you’re probably wondering how to go about implementing that design.

We’ve talked about how each activity has its own user interface, defined within a

separate layout resource file. You might be wondering about implementation hur-

dles such as the following:

. How do I control application state?

. How do I save settings?

. How do I launch a specific activity?

ptg

Watch
Out!

46 HOUR 3: Building Android Applications

With our theoretical game application in mind, it is time to dive into the implemen-

tation details of developing an Android application. A good place to start is the

application context.

Using the Application Context
The application context is the central location for all top-level application function-

ality. You use the application context to access settings and resources shared across

multiple activity instances.

You can retrieve the application context for the current process by using the

getApplicationContext() method, like this:

Context context = getApplicationContext();

Because the Activity class is derived from the Context class, you can use this

instead of retrieving the application context explicitly.

You might be tempted to just use your Activity context in all cases. Doing so
can lead to memory leaks, though. The subtleties of why this happens are beyond
the scope of this book, but there is a great official Android blog post on this topic:
http://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html.

Once you have retrieved a valid application context, you can use it to access appli-

cation-wide features and services.

Retrieving Application Resources
You can retrieve application resources by using the getResources() method of the

application context. The most straightforward way to retrieve a resource is by using

its unique resource identifier, as defined in the automatically generated R.java

class. The following example retrieves a String instance from the application

resources by its resource ID:

String greeting = getResources().getString(R.string.hello);

Accessing Application Preferences
You can retrieve shared application preferences by using the

getSharedPreferences() method of the application context. You can use the

SharedPreferences class to save simple application data, such as configuration set-

tings. Each SharedPreferences object can be given a name, allowing you can

organize preferences into categories or store preferences all together in one large set.

http://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html

ptg

Working with Activities 47

For example, you might want to keep track of each user’s name and some simple

game state information, such as whether the user has credits left to play. The follow-

ing code creates a set of shared preferences called GamePrefs and saves a few such

preferences:

SharedPreferences settings = getSharedPreferences(“GamePrefs”, MODE_PRIVATE);
SharedPreferences.Editor prefEditor = settings.edit();
prefEditor.putString(“UserName”, “Spunky”);
prefEditor.putBoolean(“HasCredits”, true);
prefEditor.commit();

To retrieve preference settings, you simply retrieve SharedPreferences and read the

values back out:

SharedPreferences settings = getSharedPreferences(“GamePrefs”, MODE_PRIVATE);
String userName = settings.getString(“UserName”, “Chippy Jr. (Default)”);

Accessing Other Application Functionality Using
Contexts
The application context provides access to a number of top-level application fea-

tures. Here are a few more things you can do with the application context:

. Launch Activity instances

. Retrieve assets packaged with the application

. Request a system-level service provider (for example, location service)

. Manage private application files, directories, and databases

. Inspect and enforce application permissions

The first item on this list—launching Activity instances—is perhaps the most com-

mon reason you will use the application context.

Working with Activities
The Activity class is central to every Android application. Much of the time, you’ll

define and implement an activity for each screen in your application.

In the Chippy’s Revenge game application, you have to implement five different

Activity classes. In the course of playing the game, the user transitions from one

activity to the next, interacting with the layout controls of each activity.

ptg

48 HOUR 3: Building Android Applications

Launching Activities
There are a number of ways to launch an activity, including the following:

. Designating a launch activity in the manifest file

. Launching an activity using the application context

. Launching a child activity from a parent activity for a result

Designating a Launch Activity in the Manifest File
Each Android application must designate a default activity within the Android

manifest file. If you inspect the manifest file of the Droid1 project, you will notice

that DroidActivity is designated as the default activity.

Other Activity classes might be designated to launch under specific circum-
stances. You manage these secondary entry points by configuring the Android
manifest file with custom filters.

In Chippy’s Revenge, SplashActivity would be the most logical activity to launch

by default.

Launching Activities Using the Application Context
The most common way to launch an activity is to use the startActivity() method

of the application context. This method takes one parameter, called an intent. We

will talk more about the intent in a moment, but for now, let’s look at a simple

startActivity() call.

The following code calls the startActivity() method with an explicit intent:

startActivity(new Intent(getApplicationContext(), MenuActivity.class));

This intent requests the launch of the target activity, named MenuActivity, by its

class. This class must be implemented elsewhere within the package.

Because the MenuActivity class is defined within this application’s package, it must

be registered as an activity within the Android manifest file. In fact, you could use

this method to launch every activity in your theoretical game application; however,

this is just one way to launch an activity.

Launching an Activity for a Result
Sometimes an activity wants to launch a related activity and get the result, instead

of launching an entirely independent activity. In this case, you can use the

Did you
Know?

ptg

Working with Activities 49

Activity.startActivityForResult() method. The result will be returned in the

Intent parameter of the calling activity’s onActivityResult() method. We will

talk more about how to pass data using an Intent parameter in a moment.

Managing Activity State
Applications can be interrupted when various higher-priority events, such as phone

calls, take precedence. There can be only one active application at a time; specifical-

ly, a single application activity can be in the foreground at any given time.

Android applications are responsible for managing their state, as well as their mem-

ory, resources, and data. The Android operating system may terminate an activity

that has been paused, stopped, or destroyed when memory is low. This means that

any activity that is not in the foreground is subject to shutdown. In other words, an

Android application must keep state and be ready to be interrupted and even shut

down at any time.

Using Activity Callbacks
The Activity class has a number of callbacks that provide an opportunity for an

activity to respond to events such as suspending and resuming. Table 3.1 lists the

most important callback methods.

TABLE 3.1 Key Callback Methods of Android Activities

Callback Method Description Recommendations

onCreate() Called when an activity Initializes static activity data.
starts or restarts. Binds to data or resources

required.
Sets layout with
setContentView().

onResume() Called when an activity Acquires exclusive resources.
becomes the foreground Starts any audio, video,
activity. or animations.

onPause() Called when an activity Saves uncommitted data.
leaves the foreground. Deactivates or releases exclu-

sive resources.
Stops any audio, video, or ani-
mations.

onDestroy() Called when an Cleans up any static activity
application is shutting data.
down. Releases any resources

acquired.

ptg

50 HOUR 3: Building Android Applications

The main thread is often called the UI thread, because this is where the processing

for drawing the UI takes place internally. An activity must perform any processing

that takes place during a callback reasonably quickly, so that the main thread is not

blocked. If the main UI thread is blocked for too long, the Android system will shut

down the activity due to a lack of response. This is especially important to respond

quickly during the onPause() callback, when a higher-priority task (for example, an

incoming phone call) is entering the foreground.

Figure 3.2 shows the order in which activity callbacks are called.

FIGURE 3.2
Important call-
back methods
of the activity
life cycle.

onCreate()

onStart()

onResume()

onRestart()

onDestroy()

Activity
Brought to
Foreground

Activity Killed
For Memory

Activity Sent
To Background

Activity
Brought to
Foreground

Activity
Brought to
Foreground

Activity
Sent to

Background

Request
Activity
Start

Activity
Running In
Foreground

onPause()

onStop()

Saving Activity State
An activity can have private preferences—much like shared application preferences.

You can access these preferences by using the getPreferences() method of the

ptg

Working with Intents 51

activity. This mechanism is useful for saving state information. For example,

PlayActivity for your game might use these preferences to keep track of the cur-

rent level and score, player health statistics, and game state.

Shutting Down Activities
To shut down an activity, you make a call to the finish() method. There are sever-

al different versions of this method to use, depending whether the activity is shut-

ting itself down or shutting down another activity.

Within your game application, you might return from the Scores, Play, and Help

screens to the Menu screen by finishing ScoresActivity, PlayActivity, or

HelpActivity.

Working with Intents
An Intent object encapsulates a task request used by the Android operating system.

When the startActivity() method is called with the Intent parameter, the

Android system matches the Intent action with appropriate activity on the Android

system. That activity is then launched.

The Android system handles all intent resolution. An intent can be very specific,

including a request for a specific activity to be launched, or somewhat vague,

requesting that any activity matching certain criteria be launched. For the finer

details on intent resolution, see the Android documentation.

Passing Information with Intents
Intents can be used to pass data between activities. You can use an intent in this

way by including additional data, called extras, within the intent.

To package extra pieces of data along with an intent, you use the putExtra()

method with the appropriate type of object you want to include. The Android pro-

gramming convention for intent extras is to name each one with the package prefix

(for example, com.androidbook.chippy.NameOfExtra).

For example, the following intent includes an extra piece of information, the current

game level, which is an integer:

Intent intent = new Intent(getApplicationContext(), HelpActivity.class);
intent.putExtra(“com.androidbook.chippy.LEVEL”, 23);
startActivity(intent);

When the HelpActivity class launches, the getIntent() method can be used to

retrieve the intent. Then the extra information can be extracted using the appropri-

ate methods. Here’s an example:

ptg

52 HOUR 3: Building Android Applications

Intent callingIntent = getIntent();
int helpLevel = callingIntent.getIntExtra(“com.androidbook.chippy.LEVEL”, 1);

This little piece of information could be used to give special Help hints, based on the

level.

For the parent activity that launched a subactivity using the

startActivityForResult() method, the result will be passed in as a parameter to

the onActivityResult() method with an Intent parameter. The intent data can

then be extracted and used by the parent activity.

Using Intents to Launch Other Applications
Initially, an application may only be launching activity classes defined within its

own package. However, with the appropriate permissions, applications may also

launch external activity classes in other applications.

There are well-defined intent actions for many common user tasks. For example,

you can create intent actions to initiate applications such as the following:

. Launching the built-in web browser and supplying a URL address

. Launching the web browser and supplying a search string

. Launching the built-in Dialer application and supplying a phone number

. Launching the built-in Maps application and supplying a location

. Launching Google Street View and supplying a location

. Launching the built-in Camera application in still or video mode

. Launching a ringtone picker

. Recording a sound

Here is an example of how to create a simple intent with a predefined action

(ACTION_VIEW) to launch the web browser with a specific URL:

Uri address = Uri.parse(“http://www.perlgurl.org”);
Intent surf = new Intent(Intent.ACTION_VIEW, address);
startActivity(surf);

This example shows an intent that has been created with an action and some data.

The action, in this case, is to view something. The data is a uniform resource identi-

fier (URI), which identifies the location of the resource to view.

For this example, the browser’s activity then starts and comes into foreground, caus-

ing the original calling activity to pause in the background. When the user finishes

with the browser and clicks the Back button, the original activity resumes.

ptg

Working with Dialogs 53

Applications may also create their own intent types and allow other applications to

call them, allowing for tightly integrated application suites.

The OpenIntents.org website keeps a list of intent actions at
www.openintents.org/en/intentstable. This list includes those built into Android as
well as those available from third-party applications.

Working with Dialogs
Handset screens are small, and user interface real estate is valuable. Sometimes you

want to handle a small amount of user interaction without creating an entirely new

activity. In such instances, creating an activity dialog can be very handy. Dialogs

can be helpful for creating very simple user interfaces that do not necessitate an

entirely new screen or activity to function. Instead, the calling activity dispatches a

dialog, which can have its own layout and user interface, with buttons and input

controls.

Table 3.2 lists the important methods for creating and managing activity dialog

windows.

TABLE 3.2 Important Dialog Methods of the Activity Class

Method Purpose

Activity.showDialog() Shows a dialog, creating it if necessary.

Activity.onCreateDialog() Is a callback when a dialog is being created
for the first time and added to the activity dia-
log pool.

Activity.onPrepareDialog() Is a callback for updating a dialog on-the-fly.
Dialogs are created once and can be used
many times by an activity. This callback
enables the dialog to be updated just before
it is shown for each showDialog() call.

Activity.dismissDialog() Dismisses a dialog and returns to the activity.
The dialog is still available to be used again
by calling showDialog() again.

Activity.removeDialog() Removes the dialog completely from the
activity dialog pool.

Activity classes can include more than one dialog, and each dialog can be created

and then used multiple times.

Did you
Know?

www.openintents.org/en/intentstable

ptg

54 HOUR 3: Building Android Applications

There are quite a few types of ready-made dialog types available for use in addition

to the basic dialog. These are AlertDialog, CharacterPickerDialog,

DatePickerDialog, ProgressDialog, and TimePickerDialog.

You can also create an entirely custom dialog by designing an XML layout file and

using the Dialog.setContentView() method. To retrieve controls from the dialog

layout, you simply use the Dialog.findViewById() method.

Logging Application Information
Android provides a useful logging utility class called android.util.Log. Logging

messages are categorized by severity (and verbosity), with errors being the most

severe. Table 3.3 lists some commonly used logging methods of the Log class.

TABLE 3.3 Commonly Used Log Methods

Method Purpose

Log.e() Logs errors

Log.w() Logs warnings

Log.i() Logs informational messages

Log.d() Logs debug messages

Log.v() Logs verbose messages

Excessive use of the Log utility can result in decreased application performance.
Debug and verbose logging should be used only for development purposes and
removed before application publication.

The first parameter of each Log method is a string called a tag. One common

Android programming practice is to define a global static string to represent the

overall application or the specific activity within the application such that log filters

can be created to limit the log output to specific data.

For example, you could define a string called TAG, as follows:

private static final String TAG = “MyApp”;

Now anytime you use a Log method, you supply this tag. An informational logging

message might look like this:

Log.i(TAG, “In onCreate() callback method”);

Watch
Out!

ptg

55

Did you
Know?

Q&A

You can use the LogCat utility from within Eclipse to filter your log messages to
the tag string. See Appendix B, “Eclipse IDE Tips and Tricks,” for details.

Summary
In this hour, you’ve seen how different Android applications can be designed using

three application components: Context, Activity, and Intent. Each Android

application comprises one or more activities. Top-level application functionality is

accessible through the application context. Each activity has a special function and

(usually) its own layout, or user interface. An activity is launched when the Android

system matches an intent object with the most appropriate application activity,

based on the action and data information set in the intent. Intents can also be used

to pass data from one activity to another.

In addition to learning the basics of how Android applications are put together,

you’ve also learned how to take advantage of useful Android utility classes, such as

application logging, which can help streamline Android application development

and debugging.

Q&A
Q. How do I design a responsive application that will not be shut down during

low-memory conditions?

A. Applications can limit (but never completely eradicate) the risk of being shut

down during low-memory situations by prudently managing activity state.

This means using the appropriate activity callbacks and following the recom-

mendations. Most importantly, applications should acquire resources only

when necessary and release those resources as soon as possible.

Q. How should I design an input form for an Android application?

A. Mobile applications need to be ready to pause and resume at any time.

Typical web form style—with various fields and Submit, Clear, and Cancel

buttons—isn’t very well suited to mobile development. Instead, consider com-

mitting data as it is entered. This will keep data housekeeping to a minimum

as activity state changes, without frustrating users.

ptg

56 HOUR 3: Building Android Applications

Workshop

Quiz
1. Which of these screens does it make the most sense to show to a user first?

A. Menu screen

B. Splash screen

C. Play screen

2. True or False: Android provides a simple method for storing application set-

tings.

3. What is the recommended way to get a context instance, required by many

Android calls?

A. Context context = (Context) this;

B. Context context = getAndroidObject(CONTEXT);

C. Context context = getApplicationContext();

4. True or False: The android.util.Log class supports six types of logging.

Answers
1. B. The splash screen shows the game logo before the user starts to play.

2. True. Simply use the SharedPreferences class to store simple settings.

3. C. This retrieves the context tied to your application. Using the activity con-

text, as shown in A, works but is not recommended.

4. False. The Log class supports five log types: error, warning, informational,

debug, and verbose.

ptg

57Workshop

Exercises
1. Add a logging tag to your Droid1 project. Within the onCreate() callback

method, add an informational logging message, using the Log.i() method.

Run the application and view the log results.

2. Implement some of the Activity callback methods in addition to

onCreate(), such as onStart(), onRestart(), onResume(), onPause(),

onStop(), and onDestroy(). Add a log message to each callback method and

then run the application normally. View the log results to trace the applica-

tion life cycle. Next, try some other scenarios, such as pausing or suspending

the application and then resuming. Simulate an incoming call. Watch the

application log to see how the activity responds to such events.

ptg

This page intentionally left blank

ptg

HOUR 4

Managing Application
Resources

What You’ll Learn in This Hour:
. Using application and system resources

. Working with simple resource values

. Working with drawable resources

. Working with layouts

. Working with files

. Working with other types of resources

Android applications rely upon strings, graphics, and other types of resources to generate

robust user interfaces. Android projects can include these resources, using a well-defined

project resource hierarchy. In this hour, we review the most common types of resources

used by Android applications, how they are stored, and how they can be accessed

programmatically.

Using Application and System Resources
Resources are broken down into two types: application resources and system resources.

Application resources are defined by the developer within the Android project files and are

specific to the application. System resources are common resources defined by the Android

platform and accessible to all applications through the Android SDK.

You can access both types of resources at runtime. You can also access resources from

within other compiled resources, such as XML layout files, to define attributes of specific

controls.

ptg

60 HOUR 4: Managing Application Resources

Working with Application Resources
Application resources are created and stored within the Android project files under

the /res directory. Using a well-defined but flexible directory structure, resources are

organized, defined, and compiled with the application package. Application

resources are not shared with the rest of the Android system.

Storing Application Resources
Defining application data as resources is a good programming practice. Grouping

application resources together and compiling them into the application package has

the following benefits:

. Code is cleaner and easier to read, leading to fewer bugs.

. Resources are organized by type and guaranteed to be unique.

. Resources are conveniently located for handset customization.

. Localization and internationalization are straightforward.

The Android platform supports a variety of resource types (see Figure 4.1), which

can be combined to form different types of applications.

Android applications can include many different kinds of resources. The following

are some of the most common resource types:

. Strings, colors, and dimensions

. Drawable graphics files

. Layout files

. Raw files of all types

Resource types are defined with special XML tags and organized into specially

named project directories. Some /res subdirectories, such as the /drawable,

/layout, and /values directories, are created by default when a new Android

project is created, while others must be added by the developer when required.

ptg

Using Application and System Resources 61

Resource files stored within /res subdirectories must abide by the following rules:

. Resource filenames must be lowercase.

. Resource filenames may contain letters, numbers, underscores, and periods

only.

. Resource filenames (and XML name attributes) must be unique.

Menu Screen Help Screen

This is the help
text for Chippy’s
Revenge, a game
about collecting
nuts and avoiding
cats.

Game Screen

COLORS
#00FF00
#FF00FF
#0F0F0F

Game
XML
File

Game
Sound

File

Game
Help

Text File

DIMENSIONS
14pt
22pt

100px
160px

STRINGS
“Play Game”
“High Scores”

“About the Game”
“Purchase Nuts”

“Donate!”

RAW FILES

LAYOUT FILES
(Screen User Interfaces)

DRAWABLES
(Graphics and Icons)

Android Application Resources
Game Example: “Chippy’s Revenge”

ANDROID
APPLICATION

“ CHIPPY’S REVENGE!”

FIGURE 4.1
Android applica-
tions can use a
variety of
resources.

ptg

Watch
Out!

Did you
Know?

62 HOUR 4: Managing Application Resources

When resources are compiled, their name dictates their variable name. For exam-
ple, a graphics file saved within the /drawable directory as mypic.jpg is refer-
enced as @drawable/mypic. It is important to name resource names intelligently.

Consult the Android documentation for specific project directory naming conven-

tions.

Referencing Application Resources
All application resources are stored within the /res project directory structure and

are compiled into the project at build time. Application resources can be used pro-

grammatically. They can also be referenced in other application resources.

Each time you save a resource file (that is, copy a resource file such as a graph-
ics file into the appropriate directory) within Eclipse, the R.java class file is
recompiled to incorporate your changes. If you have not used the correct directory-
or file-naming conventions, you see a compiler error in the Eclipse Problems tab.

Application resources can be accessed programmatically using the generated class

file called R.java. To reference a resource, you must retrieve the application’s

Resources object using the getResources() method and then make the appropri-

ate method call, based on the type of resource you wish to retrieve.

For example, to retrieve a string named hello defined in the strings.xml resource

file, you would use the following method call:

String greeting = getResources().getString(R.string.hello);

We will talk more about how to access different types of resources later in this hour.

To reference an application resource from another compiled resource, such as a lay-

out file, use the following format:

@[resource type]/[resource name]

For example, the same string used earlier would be referenced as follows:

@string/hello

We will talk more about referencing resources later in the hour, when we talk about

layout files.

ptg

By the
Way

By the
Way

Working with Simple Resource Values 63

Working with System Resources
Developers can access, in addition to application resources, Android system

resources. You can share many system resources across multiple applications for a

common look and feel. For example, the Android system string resource class

(android.R.string) contains strings for words such as OK, Cancel, Yes, No, Cut,

Copy, and Paste.

To keep your application small and efficient, always check out the system
resources before adding generic resources to your project.

System resources are stored within the android package. There are classes for each

of the major resource types.

For example, the android.R.string class contains the system string resources. To

retrieve a system resource string for ok, for example, you first need to use the static

method of the Resources class called getSystem() to retrieve the global system

Resource object. Then you can call the getString() method with the appropriate

string resource name, like this:

String confirm = Resources.getSystem().getString(android.R.string.ok);

To reference a system resource from another compiled resource, such as a layout file,

use the following format:

@android:[resource type]/[resource name]

For example, you could use the system string for ok by setting the appropriate string

attribute as follows:

@android:string/ok

Working with Simple Resource Values
Simple resources such as string, color, and dimension values should be defined in

XML files under the /res/values project directory in XML files. These resource files

use special XML tags that represent name/value pairs. These types of resources are

compiled into the application package at build time.

You can manage string, color, and dimension resources by using the Eclipse
Resource editor, or you can edit the XML files directly.

ptg

By the
Way

By the
Way

64 HOUR 4: Managing Application Resources

Working with Strings
You can use string resources anywhere your application needs to display text. You

tag string resources with the <string> tag and store them in the resource file

/res/values/strings.xml.

Here is an example of a string resource file:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<string name=”app_name”>Name this App</string>
<string name=”hello”>Hello</string>

</resources>

String resources have a number of formatting options. Table 4.1 shows some simple

examples of well-formatted string values.

Strings that contain apostrophes or single straight quotes must be escaped or
wrapped within double straight quotes.

TABLE 4.1 String Resource Formatting Examples

String Resource Value Will Be Displayed As

Hello, World Hello, World

“Hello, World” Hello, World

Mother\’s Maiden Name: Mother’s Maiden Name:

He said, \“No.\” He said, “No.”

There are several ways to access a string resource programmatically. The simplest

way is to use the getString() method:

String greeting = getResources().getString(R.string.hello);

Working with Colors
You can apply color resources to screen controls. You tag color resources with the

<color> tag and store them in the file /res/values/colors.xml. This XML

resource file is not created by default and must be created manually.

You can add a new XML file, such as this one, by choosing File, New, Android XML
File and then fill out the resulting dialog with the type of file (such as values). This
will automatically set the expected folder and type of file for the Android project.

ptg

Working with Simple Resource Values 65

Here is an example of a color resource file:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<color name=”background_color”>#006400</color>
<color name=”app_text_color”>#FFE4C4</color>

</resources>

The Android system supports 12-bit and 24-bit colors in RGB format. Table 4.2 lists

the color formats that the Android platform supports.

TABLE 4.2 Color Formats Supported in Android

Format Description Example

#RGB 12-bit color #00F (blue)

#ARGB 12-bit color with alpha #800F (blue, alpha 50%)

#RRGGBB 24-bit color #FF00FF (magenta)

#AARRGGBB 24-bit color with alpha #80FF00FF (magenta, alpha 50%)

The following code retrieves a color resource named app_text_color using the

getColor() method:

int textColor = getResources().getColor(R.color.app_text_color);

There are lots of color pickers on the web. For example, http://html-color-
codes.info provides a simple color chart as well as a clickable color picker.

Working with Dimensions
To specify the size of a user interface control such as a Button or TextView control,

you need to specify different kinds of dimensions. You tag dimension resources with

the <dimen> tag and store them in the resource file /res/values/dimens.xml. This

XML resource file is not created by default and must be created manually.

Here is an example of a dimension resource file:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<dimen name=”thumbDim”>100px</dimen>
</resources>

Each dimension resource value must end with a unit of measurement. Table 4.3 lists

the dimension units that Android supports.

Did you
Know?

http://html-color-codes.info
http://html-color-codes.info

ptg

By the
Way

66 HOUR 4: Managing Application Resources

TABLE 4.3 Dimension Unit Measurements Supported in Android

Type of Measurement Description Unit String

Pixels Actual screen pixels px

Inches Physical measurement in

Millimeters Physical measurement mm

Points Common font measurement pt

Density-independent pixels Pixels relative to 160dpi dp

Scale-independent pixels Best for scalable font display sp

The following code retrieves a dimension resource called thumbDim using the

getDimension() method:

float thumbnailDim = getResources().getDimension(R.dimen.thumbDim);

Working with Drawable Resources
Drawable resources, such as image files, must be saved under the /res/drawable

project directory. These types of resources are then compiled into the application

package at build time and are available to the application.

You can drag and drop image files into the /res/drawable directory by using the
Eclipse Project Explorer. Again, remember that filenames must be lowercase and
contain only letters, numbers, and underscores.

Working with Images
The most common drawable resources used in applications are bitmap-style image

files, such as PNG and JPG files. These files are often used as application icons and

button graphics but may be used for a number of user interface components.

As shown in Table 4.4, Android supports many common image formats.

TABLE 4.4 Image Formats Supported in Android

Supported Image Description Required
Format Extension

Portable Network Graphics Preferred format .png

(PNG) (lossless)

Nine-Patch Stretchable Images Preferred format .9.png

(PNG) (lossless)

ptg

Did you
Know?

Working with Layouts 67

TABLE 4.4 Continued

Supported Image Description Required
Format Extension

Joint Photographic Experts Group Acceptable format .jpg

(JPEG/JPG) (lossy)

Graphics Interchange Format Discouraged but .gif

(GIF) supported

Using Image Resources Programmatically
Images resources are encapsulated in the class BitmapDrawable. To access a graphic

resource file called /res/drawable/logo.png, you would use the getDrawable()

method, as follows:

BitmapDrawable logoBitmap =
(BitmapDrawable)getResources().getDrawable(R.drawable.logo);

Most of the time, however, you don’t need to load a graphic directly. Instead, you

can use the resource identifier as an attribute on a control such as an ImageView

control. The following code, for example, sets and loads the logo.png graphic into

an ImageView control named LogoImageView, which must be defined within the

layout:

ImageView logoView = (ImageView)findViewById(R.id.LogoImageView);
logoView.setImageResource(R.drawable.logo);

Working with Other Types of Drawables
In addition to graphics files, you can also create specially formatted XML files to

describe other Drawable subclasses, such as ShapeDrawable. You can use the

ShapeDrawable class to define different shapes, such as rectangles and ovals. See the

Android documentation for the android.graphics.drawable package for further

information.

Working with Layouts
Most Android application user interfaces are defined using specially formatted XML

files called layouts. Layout resource files are included in the /res/layout directory.

You compile layout files into your application as you would any other resources.

Layout files often define an entire screen and are associated with a specific activi-
ty, but they need not be. Layout resources can also define part of a screen and
can be included within another layout.

ptg
Did you

Know?

68 HOUR 4: Managing Application Resources

Here is an example of a layout resource file:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<TextView

android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello” />

</LinearLayout>

You might recognize this layout: It is the default layout, called main.xml, created

with any new Android application. This layout file describes the user interface of the

only activity within the application. It contains a LinearLayout control that is used

as a container for all other user interface controls—in this case, a single TextView

control.

The main.xml layout file also references another resource: the string resource called

@string/hello, which is defined in the strings.xml resource file.

Layouts can also be created, modified, and used at runtime. However, in most
cases, using the XML layout files greatly improves code clarity and reuse.

There are two ways to format layout resources. The simplest way is to use the layout

resource editor in Eclipse to design and preview layout files. You can also edit the

XML layout files directly.

Designing Layouts Using the Layout Resource
Editor
You can design and preview layouts in Eclipse by using the layout resource editor

(see Figure 4.2). If you click on the project file /res/layout/main.xml, you see a

Layout tab, which shows you the preview of the layout. You can add and remove

layout controls by using the Outline tab. You can set individual properties and

attributes by using the Properties tab.

ptg

By the
Way

Working with Layouts 69

Like most other user interface designers, the layout resource editor works well for

basic layout design. However, the layout resource editor does not fully support all

View controls. For some of the more complex user interface controls, you might be

forced to edit the XML by hand. You might also lose the ability to preview your lay-

out if you add any of these controls to your layout. In such a case, you can still view

your layout by running your application in the emulator or on a handset.

Displaying an application correctly on a handset, rather than the Eclipse layout edi-

tor, should be a developer’s primary objective.

Designing Layouts Using XML
You can edit the raw XML of a layout file directly. If you click on the project file

/res/layout/main.xml, you see the main.xml tab, which shows you the raw XML

of the layout file.

As you gain experience developing layouts, you should familiarize yourself with the
XML layout file format. Switch to the XML view frequently and accustom yourself
to the XML generated by each type of control. Do not rely on the Eclipse layout
resource editor alone.

FIGURE 4.2
The layout
resource editor
in Eclipse.

ptg

Did you
Know?

▼

70 HOUR 4: Managing Application Resources

Try It Yourself
Give the Eclipse Layout editor a spin:

1. Open the Droid1 Android project you created earlier.

2. Navigate to the /res/layout/main.xml layout file and double-click the file to

open it in the Eclipse layout resource editor.

3. Switch to the Layout tab, and you should see the layout preview in the main

window.

The two most important tabs for the layout resource editor are the Outline tab and
the Properties tab. If you drag the Properties tab up to the right side of the
Eclipse Java perspective, you can simultaneously view the main layout resource
editor in the middle of the screen, the Project Explorer to the left, the Properties
tab to the right (to fully use the vertical space it needs), and Outline mode along
the bottom (which is usually shorter and doesn’t need the vertical space of the
Properties tab).

4. Click the Outline tab. This outline is the XML View hierarchy of this layout

file. In this case, you have a LinearLayout control. If you expand it, you see

that it contains a TextView control.

5. Select the TextView control on the Outline tab. You see a red box highlight

this control in the layout preview.

6. Click the Properties tab. This tab displays all the properties and attributes that

can be configured for the TextView control you selected. Scroll down to the

property called Text and note that it has been set to a string resource variable

called @string/hello.

7. Click the Text property called @string/hello on Properties tab. You can now

modify the field. Each time you change this field, note how the layout preview

changes. You can type in a string directly, type a different string resource

(@string/app_name, for example), or click the little button with the three dots

and choose an appropriate resource from the list of string resources available

to your application.

8. Switch to the main.xml tab and note the XML. If you save and run your proj-

ect in the emulator, you should see results similar to those displayed in the

preview.▼

ptg

Working with Files 71

Feel free to continue to explore. You might want to try adding controls, such as an

ImageView control or another TextView control, to your layout. We cover designing

layouts in much more detail later in this book.

Using Layout Resources Programmatically
If and when you need to access an entire layout programmatically, you can use a

LayoutInflater class to inflate the layout file into a View object, as in the follow-

ing example:

LayoutInflater inflater = getLayoutInflater();
View layout = inflater.inflate(R.layout.main, null);

However, in most instances, you do not need to load the layout itself, but you need

to interact with specific controls within the layout, such as the TextView control in

the main.xml layout file. Layout contents, whether Button, ImageView, or

TextView controls, are derived from the View class.

The default layout file created with the Droid1 project contains a TextView control.

However, this TextView control does not have a default name attribute. The easiest

way to access the right View control is by name, so take a moment and set the id

attribute of the TextView control, using the layout resource editor: Call it

@+id/TextView01.

Here’s how you would retrieve a TextView object named TextView01 that has been

defined in the layout resource file:

TextView txt = (TextView)findViewById(R.id.TextView01);

Working with Files
In addition to string, graphic, and layout resources, Android projects can contain

files as resources. These files may be in any format. However, some formats are

more convenient than others.

Working with XML Files
The XML file format is well supported on the Android platform. Arbitrary XML files

can be included as resources. These XML files are stored in the /res/xml directory.

XML file resources are the preferred format for any structured data your application

requires.

How you format your XML resource files is up to you. A variety of XML utilities

(shown in Table 4.5) are available as part of the Android platform.

▼

▲

ptg

By the
Way

72 HOUR 4: Managing Application Resources

TABLE 4.5 XML Utility Packages

Package Description

android.sax.* Framework to write standard SAX handlers

android.util.Xml.* XML utilities, including the XMLPullParser

org.xml.sax.* Core SAX functionality (see www.saxproject.org)

javax.xml.* SAX and limited DOM, Level 2 core support

org.w3c.dom Interfaces for DOM, Level 2 core

org.xmlpull.* XmlPullParser and XMLSerializer interfaces
(see www.xmlpull.org)

To access an XML file called /res/xml/default_values.xml programmatically, you

could use the getXml() method, like this:

XmlResourceParser defaultDataConfig = getResources().getXml(R.xml.default_values);

Working with Raw Files
An application can include raw files as resources. Raw files your application might

use include audio files, video files, and any other file formats you might need. All

raw resource files should be included in the /res/raw directory.

There are no rules or restrictions for formatting raw files (aside from the resource

filenames rules discussed earlier). If you plan to include media file resources, you

should consult the Android platform documentation to determine what media for-

mats and encodings are supported on your application’s target handsets. The same

goes for any other file format you want to include as an application resource. If the

file format you plan on using is not supported by the native Android system, your

application will be required to do all file processing internally.

To access a raw file resource programmatically, simply use the openRawResource()

method. For example, the following code would create an InputStream object to

access to the resource file /res/raw/file1.txt:

InputStream iFile = getResources().openRawResource(R.raw.file1);

All raw file resources must have unique names, excluding the file suffix, so
file1.txt and file1.dat would conflict.

www.saxproject.org
www.xmlpull.org

ptg

Did you
Know?

Summary 73

There are times when you might want to include files within your application but
not have them compiled into application resources. Android provides a special
project directory called /assets for this purpose. This project directory resides at
the same level as the /res directory. Any files included in this directory are includ-
ed as binary resources, along with the application installation package, and are
not compiled into the application.

Uncompiled files, called application assets, are not accessible through the
getResources() method. Instead, you must use AssetManager to access files
included in the /assets directory.

Working with Other Types of Resources
We have covered the most common types of resources you might need in an appli-

cation. There are numerous other types of resources available as well. These resource

types may be used less often and may be more complex. However, they allow for

very powerful applications. Some of the other types of resources you can take

advantage of include:

. String arrays

. Menus

. Animation sequences

. Shape drawables

. Styles and themes

. Custom layout controls

When you are ready to use these other resource types, consult the Android docu-

mentation for further details. You will also want to consider reading a more

advanced book on Android development. There are several available, including the

Developer’s Library book Android Wireless Application Development. Written by yours

truly, this complete Android reference includes an exhaustive explanation of appli-

cation resources types, with accompanying source code sample projects.

Summary
Android applications can use many different types of resources, including application-

specific resources and system-wide resources. The Eclipse resource editors facilitate

resource management, but XML resource files can also be edited manually. Once

ptg

74 HOUR 4: Managing Application Resources

defined, resources can be accessed programmatically as well as referenced, by name,

by other resources. String, color, and dimension values are stored in specially for-

matted XML files, and graphic images are stored as individual files. Application user

interfaces are defined using XML layout files. Raw files, which can include custom

data formats, may also be included as resources for use by the application. Finally,

applications may include uncompiled binary files, which are called application

assets.

Q&A
Q. Can I tell what all the system resources are, just by their names?

A. Sometimes you can’t. The official documentation for the Android system

resources does not describe each resource. If you are confused about what a

specific system resource is or how it works, you can either experiment with it

or examine its resource definition. Android system resources are defined in the

/tools/lib/res/default directory of the Android SDK.

Q. Must string, color, and dimension resources be stored in separate XML files?

A. Technically, no. However, it is highly recommended. For example, localization

and internationalization may require different strings, but the dimensions

might remain the same ones. Keeping the resource types separate keeps them

organized.

Q. Which XML parser should I use?

A. Our tests have shown that the SAX parser is the most efficient XML parser

(closely followed by XMLPullParser), and we recommend this parser for most

purposes. However, the choice is yours, and you should test your specific XML

implementation to determine the appropriate parser for your application’s

needs.

Q. What is the difference between project resources and project assets?

A. Project resources are compiled into the application and easily accessed using

the getResources() method. Application assets are used less frequently to

store uncompiled files within the application package file that is installed on

the handset. Assets are accessed using the getAssets() method.

ptg

75Workshop

Workshop

Quiz
1. What color formats are supported for color resources?

A. 12-bit color

B. 24-bit color

C. 64-bit color

2. True or False: You can include files of any format as a resource.

3. Which graphics formats are supported and encouraged on Android?

A. Joint Photographic Experts Group (JPG)

B. Portable Network Graphics (PNG)

C. Graphics Interchange Format (GIF)

D. Nine-Patch Stretchable Images (.9.PNG)

4. True or False: Resource filenames can be uppercase.

5. True or False: Naming resources is arbitrary.

Answers
1. A and B. Both 12-bit and 24-bit color are supported.

2. True. Simply include a file as a raw resource.

3. B and D. Although all four formats are supported, they are not all encour-

aged. PNG graphics, including Nine-Patch Stretchable graphics, are highly

encouraged for Android development because they are lossless and efficient.

JPG files are acceptable but lossy, and GIF file use is outright discouraged.

4. False. Resource filenames may contain letters, numbers, and underscores and

must be lowercase.

5. False. The resource names dictate the variable names used to reference the

resources programmatically.

ptg

76 HOUR 4: Managing Application Resources

Exercises
1. Add a new color resource with a value of #00ff00 to your Droid1 project.

Within the layout file, change the textColor attribute of the TextView con-

trol to the color resource you just created. Rerun the application and view the

result.

2. Add a new dimension resource with a value of 22pt to your Droid1 project.

Within the layout file, change the textSize attribute of the TextView control

to the dimension resource you just created. Rerun the application and view

the result.

3. Add a new drawable graphics file resource to your Droid1 project. Within the

layout file, add an ImageView control and set its src attribute to the drawable

resource you just created. Rerun the application and view the result.

4. Add a raw text file resource to the Droid1 project. Use the openRawResource()

method to create an InputStream object and read the file. Output the con-

tents of the file to the log by using the Log.v() method. Rerun the application

and view the result.

ptg

HOUR 5

Configuring the Android
Manifest File

What You’ll Learn in This Hour:
. Exploring the Android manifest file
. Configuring basic application settings
. Defining activities
. Managing application permissions
. Managing other application settings

Every Android project includes a special file called the Android manifest file. The Android

system uses this file to determine application configuration settings, including the applica-

tion’s identity as well as what permissions the application requires to run. In this hour, we

will examine the Android manifest file in detail and look at how different applications use

its features.

Exploring the Android Manifest File
The Android manifest file, named AndroidManifest.xml, is an XML file that must be

included at the top level of any Android project. The Android system uses the information

in this file to do the following:

. Install and upgrade the application package

. Display application details to users

. Launch application activities

ptg

Did you
Know?

78 HOUR 5: Configuring the Android Manifest File

. Manage application permissions

. Handle a number of other advanced application configurations, including act-

ing as a service provider or content provider.

If you use Eclipse with the ADT plug-in for Eclipse, the Android project wizard will
create the initial AndroidManifest.xml file with default values for the most
important configuration settings.

You can edit the Android manifest file by using the Eclipse manifest file resource

editor or by manually editing the XML.

The Eclipse manifest file resource editor organizes the manifest information into

categories presented on five tabs:

. Manifest

. Application

. Permissions

. Instrumentation

. AndroidManifest.xml

Using the Manifest Tab
The Manifest tab (see Figure 5.1) contains package-wide settings, including the

package name, version information, and minimum Android SDK version informa-

tion. You can also set any hardware configuration requirements here.

Using the Application Tab
The Application tab (see Figure 5.2) contains application-wide settings, including

the application label and icon, as well as information about application compo-

nents such as activities, intent filters, and other application functionality, including

configuration for service and content provider implementations.

ptg

Exploring the Android Manifest File 79

FIGURE 5.1
The Manifest
tab of the
Eclipse mani-
fest file
resource editor.

FIGURE 5.2
The Application
tab of the
Eclipse mani-
fest file
resource editor.

Using the Permissions Tab
The Permissions tab (see Figure 5.3) contains any permission rules required by the

application. This tab can also be used to enforce custom permissions created for the

application.

ptg

Watch
Out!

80 HOUR 5: Configuring the Android Manifest File

FIGURE 5.3
The
Permissions tab
of the Eclipse
manifest file
resource editor.

Do not confuse the application Permission field (a drop-down list on the
Application tab) with the Permissions tab features. Use the Permissions tab to
define the permissions required for the application to access the resources or
APIs it needs. The other is for defining permissions required by other applications
to access exposed resources and APIs in your application.

Using the Instrumentation Tab
You can use the Instrumentation tab (see Figure 5.4) to declare any instrumentation

classes for monitoring the application. In the Name field, you fill in the fully quali-

fied class name of the Instrumentation subclass for your application, and for

Target Package, you provide the name of the package whose manifest file contains

the <application> tag for the application to be monitored. We will talk more about

instrumentation and testing in a later chapter.

FIGURE 5.4
The
Instrumentation
tab of the
Eclipse
manifest file
resource editor.

ptg

Configuring Basic Application Settings 81

FIGURE 5.5
The
AndroidManifest
.xml tab of the
Eclipse
manifest file
resource editor.

Figure 5.5 shows the Android manifest file for the Droid1 project you created in the

first hour, which has fairly simple XML.

Note that the file has a single <manifest> tag, within which all the package-wide

settings appear. Within this tag is one <application> tag, which defines the specific

application, with its single activity, called DroidActivity, with an Intent filter. In

addition, the <uses-sdk> tag is set to 3.

Now let’s talk about each of these settings in a bit more detail.

Configuring Basic Application Settings
Many of the most important settings your application requires are set using attrib-

utes and child tags of the <manifest> and <application> blocks.

Using the AndroidManifest.xml Tab
The Android manifest file is a specially formatted XML file. You can edit the XML manually in the

AndroidManifest.xml tab of the manifest file resource editor (see Figure 5.5).

ptg

By the
Way

82 HOUR 5: Configuring the Android Manifest File

Naming Android Packages
You define the package within the Android manifest file in the <manifest> tag,

using the package attribute, as follows:

<manifest
xmlns:android=”http://schemas.android.com/apk/res/android”
package=”com.androidbook.droid1”
android:versionCode=”1”
android:versionName=”1.0”>

If you use the Android project wizard in Eclipse to create a project, you must fill in
the package name at that time. That package name is used in the default Android
manifest file.

Linking Secondary Libraries
Applications can use the <uses-library> tag to link to other libraries in addition to

the standard Android packages. This feature is available on the Application tab of

the resource editor. Here’s an example:

<uses-library
android:name=”com.company.sharedutilities” />

Versioning an Application
Manifest version information is used for two purposes:

. To organize and keep track of application features

. To manage application upgrades

For this reason, the <manifest> tag has two separate version attributes: a version

name and a version code.

Setting the Version Name
The version name is the traditional versioning information, used to keep track of

application builds. Smart versioning is essential when publishing and supporting

applications. The <manifest> tag android:versionName attribute is a string value

provided to keep track of the application build number. For example, the Droid1

project has the version name 1.0. The format of the version name field is up to the

developer. However, note that this field is visible to the user.

Setting the Version Code
The version code allows the Android platform to programmatically upgrade and

downgrade an application. The <manifest> tag android:versionCode attribute is

ptg

Did you
Know?

By the
Way

Configuring Basic Application Settings 83

an integer value that the Android platform and Android marketplaces use to man-

age application upgrades and downgrades. android:versionCode generally starts

at a value of 1. This value should be incremented with each new version of the

application deployed to users. The version code field is not visible to the user and

need not stay in sync with the version name.

The version code needs to be incremented for published applications or testing
purposes only, not each time you deploy an application onto a device for-
debugging.

Setting the Minimum Android SDK Version
Android applications can be compiled for compatibility with several different SDK

versions. You use the <uses-sdk> tag to specify the minimum SDK required on the

handset in order for the application to build and run properly. The

android:minSdkVersion attribute of this tag is an integer representing the mini-

mum Android SDK version required. Table 5.1 shows the Android SDK versions

available for shipping applications.

TABLE 5.1 Android SDK Versions Available

Android SDK Version Value

Android 1.0 SDK 1

Android 1.1 SDK 2

Android 1.5 SDK 3

Android 1.6 SDK 4

Android 2.0 SDK 5

Android 2.0.1 SDK 6

Android 2.1 SDK 7

For example, in the Droid1 project, you specified that the minimum SDK as Android

2.1 SDK:

<uses-sdk
android:minSdkVersion=”7” />

Each time a new Android SDK is released, you can find the SDK version number in
the SDK release notes. This is often referred to as the API Level within the tools,
especially the Android SDK and AVD Manager.

ptg

▼

84 HOUR 5: Configuring the Android Manifest File

Naming an Application
The <application> tag android:label attribute is a string representing the appli-

cation name. You can set this name to a fixed string, as in the following example:

<application
android:label=”My application name”>

You can also set the android:label attribute to a string resource. In the Droid1

project, you set the application name to the string resource as follows:

<application
android:label=”@string/app_name”>

In this case, the resource string called app_name in the strings.xml file supplies the

application name.

Providing an Icon for an Application
The <application> tag attribute called android:icon is a Drawable resource repre-

senting the application. In the Droid1 project, you set the application icon to the

Drawable resource as follows:

<application
android:icon=”@drawable/icon”>

Try It Yourself
Although you will place just a single icon reference in the <application> tag attrib-

ute android:icon, you will need to create three different icons. These will represent

the three default icons for low pixel density screens (ldpi), high pixel density screens

(hdpi), and medium pixel density screens (mdpi). The Android system will automati-

cally choose the appropriate graphic based upon the capabilities of the device the

application is running on. You will learn more about this topic in Hour 20,

“Developing for Different Devices.” For now, you can just create a single graphic

and then resize it for the three different resolutions.

To make your own custom application icons, perform the following steps:

1. Design a 48×48 pixel graphic with your favorite graphics program. This is the

icon for medium pixel density screens.

2. Save the graphic in PNG format, using the filename myicon.png.

3. Add the graphic file as a Drawable resource to your application, in the

/res/drawable-mdpi directory.

ptg

Configuring Basic Application Settings 85

4. Repeat steps 1–3, but resize the graphic to 72×72 pixels and place it in the

/res/drawable-hdpi directory. This is the icon for high pixel density screens.

5. Repeat steps 1–3, but resize the graphic to 36×36 pixels and place it in the

/res/drawable-ldpi directory. This is the icon for low pixel density screens.

6. Set the android:icon property to the resource name of your new icon,

@drawable/myicon. This will pick one of the three graphics you created

based on the pixel density of the handset (or emulator) that the application

is running on.

The end result will be the same graphic found in three differently sized files in three

different resource directories. Typically, a graphic may be further optimized for each

resolution.

Providing an Application Description
The <application> tag android:description attribute is a string representing a

short description of the application. You can set this name to a string resource:

<application
android:label=”My application name”
android:description=”@string/app_desc”>

The Android system and application marketplaces use the application description to

display information about the application to the user.

Setting Debug Information for an Application
The <application> tag android:debuggable attribute is a Boolean value that indi-

cates whether the application can be debugged using a debugger such as Eclipse.

You will not be able to debug your application until you set this value. You will also

want to reset this value to false before you publish your application.

Setting Other Application Attributes
There are a number of other settings on the Application tab, but they generally

apply only in very specific cases, such as when you want to apply a theme other

than the default to your application. There are also settings for handling how the

application interacts with the Android operating system. For most applications, the

default settings are acceptable.

You will be spending a lot of time on the Application tab in the Application Nodes

box, where you can register application components—most commonly, each time

you register a new activity.

▲

ptg

▼

86 HOUR 5: Configuring the Android Manifest File

Defining Activities
Recall that Android applications comprise a number of different activities. Every

activity must be registered within the Android manifest file before it can be used. You

need to update the manifest file each time you add a new activity to an application.

Each activity represents a specific task to be completed, often with its own screen.

Activities are launched in different ways, using the Intent mechanism. Each activi-

ty can have its own label (name) and icon but uses the application’s generic label

and icon by default.

Registering Activities
You can register each new activity in the Application Nodes section of the

Application tab. Each new activity has its own <activity> tag in the resulting

XML. For example, the following XML excerpt defines an activity class called

DroidActivity:

<activity
android:name=”.DroidActivity” />

This activity must be defined as a class within the application package.

Try It Yourself
To register a new activity in the Droid1 project, follow these steps:

1. Open the Droid1 project in Eclipse.

2. Right-click /src/com.androidbook.droid1 and choose New Class. The New

Java Class window opens.

3. Name your new class DroidActivity2.

4. Click the Browse button next to the Superclass field and set the superclass to

android.app.Activity.

5. Click the Finish button. You see the new class in your project.

6. Make a copy of the main.xml layout file in the /res/layout resource directo-

ry for your new activity and name it second.xml. Modify the layout so that

you know it’s for the second activity. For example, you could change the text

string shown. Save the new layout file.▼

ptg

Watch
Out!

Defining Activities 87

7. Open the DroidActivity2 class. Right-click within the class and choose

Source-Override/Implement Methods.

8. Check the box next to the onCreate(Bundle) method. This method is added

to your class.

9. Within the onCreate() method, set the layout to load for the new activity by

adding and calling the setContentView(R.layout.second) method. Save the

class file.

10. Open the Android manifest file and click the Application tab of the resource

editor.

11. In the Application Nodes section of the Application tab, click the Add button

and choose the Activity element. The attributes for the activity are shown in

the right side of the screen.

If you have an existing Activity selected, you’ll be adding to that. Instead, select
None or choose the Create a New Element at the Top Level, in Application radio
button at the top of the dialog.

12. Click the Browse button next to the activity Name field. Choose the new activ-

ity you created, DroidActivity2.

13. Save the manifest file. Switch to the AndroidManifest.xml tab to see what the

new XML looks like.

You now have a new, fully registered DroidActivity2 activity that you can use in

your application.

Designating the Launch Activity
You can use an Intent filter to designate an activity as the primary entry point of

the application. The Intent filter for launching an activity by default must be con-

figured using an <intent-filter> tag with the MAIN action type and the LAUNCHER

category. In the Droid1 project, the Android project wizard set DroidActivity as the

primary launching point of the application:

<activity
android:name=”.DroidActivity”
android:label=”@string/app_name”>
<intent-filter>

<action
android:name=”android.intent.action.MAIN” />

▼

▲

ptg

88 HOUR 5: Configuring the Android Manifest File

By the
Way

<category
android:name=”android.intent.category.LAUNCHER” />

</intent-filter>
</activity>

This <intent-filter> tag instructs the Android system to direct all application

launch requests to the DroidActivity activity.

Managing Application Permissions
The Android platform is built on a Linux kernel and leverages its built-in system

security as part of the Android security model. Each Android application exists in its

own virtual machine and operates within its own Linux user account (see Figure 5.6).

Applications that want access to shared or privileged resources on the handset must

declare those specific permissions in the Android manifest file. This security mecha-

nism ensures that no application can change its behavior on-the-fly or perform any

operations without the user’s permission.

Because each application runs under a different user account, each application
has its own private files and directories, just as a Linux user would.

Android applications can access their own private files and databases without any

special permissions. However, if an application needs to access shared or sensitive

resources, it must declare those permissions using the <uses-permission> tag with-

in the Android manifest file. These permissions are managed on the Permissions tab

of the Android manifest file resource editor.

ptg

▼

Managing Application Permissions 89

Try It Yourself
To give your application permission to access the built-in camera, use the following

steps:

1. Open the Droid1 project in Eclipse.

2. Open the Android manifest file and click the Permissions tab of the resource

editor.

3. Click the Add button and choose Uses Permission. The Name attribute for the

permission is shown in the right side of the screen as a drop-down list.

4. Choose android.permission.CAMERA from the drop-down list.

5. Save the manifest file. Switch to the AndroidManifest.xml tab to see what the

new XML looks like.

You have now registered the camera permission. Your application will be able to

access the camera without security exceptions.

ANDROID PLATFORM SECURITY MODEL

Android Application #1
“DroidWars”

com.androidbook.DroidWars

DALVIK Virtual Machine

Android Application #2
“Chippy’s Revenge!”

com.androidbook.Chipmunk

DALVIK Virtual Machine

Linux User
“com.androidbook.DroidWars”

Private
App Files and

Databases

Linux User
“com.androidbook.Chipmunk”

Access Handset Hardware
Phone Dialer, WiFi, Bluetooth, Camera, Audio,

Telephony, Device Sensors, etc.

Access Shared Data
Contacts, Calendars, Owner Information,

Phone Data, etc.

Private
App Files and

Databases

Linux Operating System

Android Platform Security Enforcement

FIGURE 5.6
Simplified
Android platform
architecture
from a security
perspective.

▲

ptg

90

By the
Way

HOUR 5: Configuring the Android Manifest File

During the application installation process, the user is shown exactly what permis-
sions the application uses. The user must agree to install the application after
reviewing these permissions.

Table 5.2 lists some of the most common permissions used by Android applications.

TABLE 5.2 Common Permissions Used by Android Applications

Permission Category Useful Permissions

Location-based services android.permission.ACCESS_COARSE_LOCATION

android.permission.ACCESS_FINE_LOCATION

Accessing contact database android.permission.READ_CONTACTS

android.permission.WRITE_CONTACTS

Accessing calendars android.permission.READ_CALENDAR

android.permission.WRITE_CALENDAR

Changing general phone android.permission.SET_ORIENTATION

settings android.permission.SET_TIME_ZONE

android.permission.SET_WALLPAPER

Making calls android.permission.CALL_PHONE

android.permission.CALL_PRIVILEGED

Sending and receiving android.permission.READ_SMS

messages android.permission.RECEIVE_MMS

android.permission.RECEIVE_SMS

android.permission.RECEIVE_WAP_PUSH

android.permission.SEND_SMS

android.permission.WRITE_SMS

Using network sockets android.permission.INTERNET

Accessing audio settings android.permission.RECORD_AUDIO

android.permission.MODIFY_AUDIO_SETTINGS

Accessing network settings android.permission.ACCESS_NETWORK_STATE

android.permission.CHANGE_NETWORK_STATE

Accessing Wi-Fi settings android.permission.ACCESS_WIFI_STATE

android.permission.CHANGE_WIFI_STATE

Accessing phone hardware android.permission.BLUETOOTH

android.permission.CAMERA

android.permission.FLASHLIGHT
android.permission.VIBRATE

android.permission.BATTERY_STATS

Account services android.permission.GET_ACCOUNTS

android.permission.MANAGE_ACCOUNTS

ptg

91

Watch
Out!

By the
Way

Summary

Permission Category Useful Permissions

Synchronization android.permission.READ_SYNC_SETTINGS

android.permission.READ_SYNC_STATS

android.permission.WRITE_SYNC_SETTINGS

For a complete list of the permissions used by Android applications, see the

android.Manifest.permission class documentation.

Some permissions are not enforced yet by the Android system. An application
should still request these permissions anyway, for compatibility reasons.

Applications can define and enforce their own permissions. This can be critically
important for certain types of applications, such as banking and commerce
applications.

Managing Other Application Settings
In addition to the features already discussed in this hour, a number of other special-

ized features can be configured in the Android manifest file. For example, if your

application requires a hardware keyboard or a touch screen, you can specify these

hardware configuration requirements in the Android manifest file.

You must also declare any other application components—such as whether your

application acts as a service provider, content provider, or broadcast receiver—in the

Android manifest file.

Summary
The Android manifest file (AndroidManifest.xml) exists at the root of every

Android project. It is a required component of any project. The Android manifest file

uses a simple XML schema to describe what the application is, what its components

are, and what permissions it has. The Android platform uses this information to

manage the application. Eclipse has a handy resource editor for managing Android

manifest files.

ptg

92 HOUR 5: Configuring the Android Manifest File

Q&A
Q. Can application names be internationalized?

A. Yes. You simply define the android:label attribute as a string resource and

create resource files for each locale you want to support. We will talk more

about localizing resources later in this book.

Q. If permissions are not being enforced, why should I include them in the
Android manifest file?

A. While your application might function even if you don’t declare certain per-

missions, this is dangerous behavior. Firmware upgrades can result in the

Android system enforcing these permissions at a future date, causing your

application to stop functioning properly.

Q. I added a new Activity class to my project, and my application keeps
crashing. What did I do wrong?

A. Chances are, you forgot to register the activity in the Android manifest file. If

you don’t register the activity by using an <activity> tag, your application

may crash upon launch.

Q. If I can use the Eclipse resource editor to edit the Android manifest file, why
do I need to know about the raw XML?

A. When making straightforward configuration changes to the manifest file,

using the resource editor is the most straightforward method. However, when

bulk changes must be made, editing the XML directly can be much faster.

Q. Why do I need read permission to shared resources such as contacts?

A. To protect the privacy of the user, applications must register permission to

read sensitive data. While applications cannot do any direct harm to the

Android system with just read access, the information extracted from contacts

or the calendar could theoretically be used for nefarious purposes. Thus, per-

mission is required to access this information.

ptg

Workshop 93

Workshop

Quiz
1. True or False: Every Android application needs an Android manifest file.

2. True or False: The android:versionCode numbers must correspond with the

application android:versionName.

3. What is the permission for using the camera?

A. android.permission.USE_CAMERA

B. android.permission.CAMERA

C. android.permission.hardware.CAMERA

4. True or False: When installing an application, the user is shown the permis-

sions requested in the Android manifest file.

Answers
1. True. The Android manifest file is an essential part of every Android project.

This file defines the application’s identity, settings, and permissions.

2. False. The android:versionCode attribute must be incremented each time the

application is deployed, and it can be upgraded. This number need not match

the android:versionName setting.

3. B. You use the android.permission.CAMERA permission to access the camera.

4. True. This way, the user knows what the application might attempt to do, such

as take a picture or access the user’s contacts.

Exercises
1. Create a new icon for the Droid1 project.

2. Create another Activity class. Edit the permissions to use a permission of

your choice. Also, try to use feature without requesting the appropriate per-

mission and observe the results.

3. Perform a modification to the manifest file using the manifest file editor.

Observe the changes made by looking at the XML. Attempt to do the same by

just editing the XML.

ptg

This page intentionally left blank

ptg

HOUR 6

Designing an Application
Framework

What You’ll Learn in This Hour:
. Designing an Android trivia game
. Implementing an application prototype
. Running the game prototype

It’s time to put the skills you have learned so far to use. In this hour, you design an

Android application prototype, a basic framework on which you will build in the future.

You will add many exciting features to this application over the course of this book.

Designing an Android Trivia Game
Because social trivia games are so popular right now, you want to implement one. In your

soon-to-be-viral game, the user will be asked random questions about travel and related

experiences, such as these:

. Have you ever visited the pyramids in Egypt?

. Have you ever milked a cow?

. Have you ever gone diving with great white sharks?

. Have you climbed a mountain?

The user with the highest score is the most well traveled and well seasoned. You’ll call the

game Been There, Done That!.

ptg

96 HOUR 6: Designing an Application Framework

Determining High-Level Game Features
Try to imagine what features a good game application should have. In addition to

the game question screen itself, you need the following:

. A startup screen

. A way to view scores

. An explanation of the game rules

. A way to store game settings

You also need a way to transition between these different features. One way to do

this is to create a main menu screen that the user can use to navigate the applica-

tion features.

Reviewing the requirements, we find that we need six primary screens within the

Been There, Done That! application. They are the following:

. A startup screen

. A main menu screen

. A game play screen

. A settings screen

. A scores screen

. A help screen

These screens will make up the core user interface for the application.

Determining Activity Requirements
Each screen of the Been There, Done That! application will have its own Activity

class. Figure 6.1 shows the six activities required, one for each screen.

A good design practice is to implement a base Activity class with shared compo-

nents, which we’ll simply call QuizActivity. You will employ this practice as you

define the activities needed by the Been There, Done That! game:

. QuizActivity—Derived from android.app.Activity, this is the base class.

Here, you will define application preferences and other application-wide set-

tings and features.

. QuizSplashActivity—Derived from QuizActivity, this class represents the

splash screen.

ptg

Designing an Android Trivia Game 97

. QuizMenuActivity—Derived from QuizActivity, this class represents the

main menu screen.

. QuizHelpActivity—Derived from QuizActivity, this class represents the

help screen.

. QuizScoresActivity—Derived from QuizActivity, this class represents the

scores screen.

. QuizSettingsActivity—Derived from QuizActivity, this class represents

the settings screen.

. QuizGameActivity—Derived from QuizActivity, this class represents the

game screen.

Splash
Activity

Main Menu
Activity

Scores
Activity

Game
Activity

Settings
Activity

Help
Activity

FIGURE 6.1
A rough design
of the activity
workflows in the
Been There,
Done That!
application.

Determining Screen-Specific Game Features
Now it’s time to define the basic features of each activity in the Been There, Done

That! application.

Defining Splash Screen Features
The splash screen serves as the initial entry point for the Been There, Done That!

game. Its functionality should be encapsulated within the QuizSplashActivity

class. This screen should do the following:

. Display the name and version of the application

. Display an interesting graphic or logo for the game

. Transition automatically to the main menu screen after a period of time

ptg

98 HOUR 6: Designing an Application Framework

Figure 6.2 shows a mockup of the splash screen.

FIGURE 6.2
The Been There,
Done That!
splash screen.

Defining Main Menu Screen Features
The main menu screen serves as the main navigational screen in the game. This

screen displays after the splash screen and requires the user to choose where to go

next. Its functionality should be encapsulated within the QuizMenuActivity class.

This screen should do the following:

. Automatically display after the splash screen

. Allow the user to choose Play Game, Settings, Scores, or Help

Figure 6.3 shows a mockup of the main menu screen.

Defining Help Screen Features
The help screen tells the user how to play the game. Its functionality should be

encapsulated within the QuizHelpActivity class. This screen should do the

following:

. Display help text to the user and enable the user to scroll through text

. Provide a method for the user to suggest new questions

ptg

Designing an Android Trivia Game 99

Figure 6.4 shows a mockup of the help screen.

FIGURE 6.3
The Been There,
Done That!
main menu
screen.

FIGURE 6.4
The Been There,
Done That! help
screen.

ptg

100 HOUR 6: Designing an Application Framework

Defining Scores Screen Features
The scores screen allows the user to view game scores. Its functionality should be

encapsulated within the QuizScoresActivity class. This screen should do the fol-

lowing:

. Display top score statistics

. Show the latest score if the user is coming from the game screen

Figure 6.5 shows a mockup of the scores screen.

FIGURE 6.5
The Been There,
Done That!
scores screen.

Defining Settings Screen Features
The settings screen allows users to edit and save game settings, including username

and other important features. Its functionality should be encapsulated within the

QuizSettingsActivity class. This screen should do the following:

. Allow the user to input game settings

. Allow the user to invite friends to play

ptg

Designing an Android Trivia Game 101

Figure 6.6 shows a mockup of the basic settings screen.

FIGURE 6.6
The Been There,
Done That! set-
tings screen.

Defining Game Screen Features
The game screen displays the trivia quiz. Its functionality should be encapsulated

within the QuizGameActivity class. This screen should do the following:

. Display a series of yes/no questions

. Handle input and keep score and state of the quiz

. Transition to the scores screen when the user is finished playing

ptg

By the
Way

102 HOUR 6: Designing an Application Framework

Figure 6.7 shows a mockup of the game screen.

FIGURE 6.7
The Been There,
Done That!
game screen.

Implementing an Application Prototype
Now that you have a rough idea what the Been There, Done That! application will

do and how it will look, it’s time to start coding. This involves the following steps:

1. Creating a new Android project in Eclipse

2. Adding some project resources, including strings and graphics

3. Creating a layout for each screen

4. Implementing an activity for each screen

5. Creating a set of application-wide preferences

The code for this project is available on the book website,
http://www.informit.com/title/9780321673350.

http://www.informit.com/title/9780321673350

ptg

Did you
Know?

Implementing an Application Prototype 103

Creating a New Android Project
You can begin creating a new Android project for your application by using the

Eclipse Android project wizard.

The project has the following settings:

. Project name: TriviaQuiz

. Build target: Android 2.1 + Google APIs

. Application name: Been There, Done That!

. Package name: com.androidbook.triviaquiz

. Create activity: QuizSplashActivity

Using these settings, you can create the basic Android project. However, you need to

make a few adjustments.

In the code provided with this book (available at http://www.informit.com/title/
9780321673350), the package names contain the hour number of the project
they represent. For example, the package name for this hour is com.android-
book.triviaquiz6. This allows the projects to coexist on the handset and makes
it easier to load all of them at once.

Adding Project Resources
The Been There, Done That! project requires some additional resources. Specifically,

you need to add a Layout file for each activity and a text string for each activity

name, and you need to change the application icon to something more appropriate.

Adding String Resources
First, you modify the strings.xml resource file. You delete the hello string and cre-

ate six new string resources—one for each screen. For example, you should create a

string called help with a value of “Help Screen”. When you are done, the

strings.xml file should look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<string
name=”app_name”>Been There, Done That!</string>

<string
name=”help”>Help Screen</string>

<string
name=”menu”>Main Menu Screen</string>

<string

http://www.informit.com/title/9780321673350
http://www.informit.com/title/9780321673350

ptg

104 HOUR 6: Designing an Application Framework

name=”splash”>Splash Screen</string>
<string

name=”settings”>Settings Screen</string>
<string

name=”game”>Game Screen</string>
<string

name=”scores”>Scores Screen</string>
</resources>

Adding Layout Resources
Next, you need layout files to match each activity you will be creating. First, you

rename the main.xml layout splash.xml. Then you copy the splash.xml file five

more times, resulting in one layout for each activity: game.xml, help.xml,

menu.xml, scores.xml, and settings.xml.

You may notice that there is an error in each Layout file. This is because the

TextView control in the layout refers to the @string/hello string, which no longer

exists. For each layout file, you need to use the Eclipse layout editor to change the

String resource loaded by the TextView control. For example, game.xml needs to

replace the reference to @string/hello with the new string you created called

@string/game. Now when each layout loads, it displays the screen it is supposed to

represent.

Adding Drawable Resources
While you are adding resources, you should change the icon for your application to

something more appropriate. Starting with a nice public domain image of Earth

from NASA, you can create a 48×48 pixel PNG file called quizicon.png and add

this resource file to the /drawable resource directory. Then you can delete the

icon.png file used by default.

In the project code for this chapter, and future chapters, you will see that there is
only a single drawable resource directory named /drawable. Whenever the
Android system goes about picking a drawable resource, it only looks in this direc-
tory instead of the three default directories, /drawable-ldpi, /drawable-mdpi,
and /drawable-hdpi. For this book, the icon quizicon.png file contains the hour
number to differentiate each project visually.

Implementing Application Activities
To implement a base Activity class, you simply copy the source file called

QuizSplashActivity.java. Then you create a new class file called QuizActivity.

This class should look very simple for now:

Did you
Know?

ptg
By the

Way

Implementing an Application Prototype 105

package com.androidbook.triviaquiz6;
import android.app.Activity;
public class QuizActivity extends Activity {

public static final String GAME_PREFERENCES = “GamePrefs”;
}

You will add to this class later. Next, you update the QuizSplashActivity class to

extend from the QuizActivity class instead of directly from the Activity class.

Creating the Rest of the Application Activities
You can copy the QuizSplashActivity five more times, once for each activity you

need: QuizMenuActivity, QuizHelpActivity, QuizScoresActivity,

QuizSettingsActivity, and QuizGameActivity.

Note the handy way that Eclipse updates the class name when you copy a class file.

You can also create class files by right-clicking the package name com.android-

book.triviaquiz and choosing New Class. Eclipse presents a dialog where you can

fill in class file settings.

For more tips on working with Eclipse, check out Appendix B, “Eclipse IDE Tips
and Tricks.”

Note that there is an error in each Java file. This is because each activity is trying to

load the main.xml layout file, which no longer exists. You need to modify each class

to load the specific layout associated with the activity. For example, in the

QuizHelpActivity class, you modify the setContentView() method to load the

layout file you created for the help screen as follows:

setContentView(R.layout.help);

You make similar changes to the other activity files, such that each call to

setContentView() loads the corresponding layout file.

Updating the Android Manifest File
You now need to make some changes to the Android manifest file. First, you modify

the application icon resource to point at the @drawable/quizicon icon you created.

Second, you need to register all your new activities in the manifest file so they will

run properly. Finally, you set the Debuggable application attribute to true and veri-

fy that you have QuizSplashActivity set as the default activity to launch.

ptg

106 HOUR 6: Designing an Application Framework

For the book code, we’ve only created a single icon. However, even if you’ve creat-
ed three differently sized icons and placed them in the three default directories
(/drawable-ldpi, /drawable-mpi, and /drawable-hdpi), only a single reference
to the icon is required. Just make sure all of the icons are named exactly the
same. This allows the Android system to choose the most appropriate one for the
hardware the application is running on.

Creating Application Preferences
The Been There, Done That! trivia game needs a simple way to store some basic

state information and user data. You can use Android’s shared preferences

(android.content.SharedPreferences) to add this functionality.

You can access shared preferences, by name, from any activity within the applica-

tion. Therefore, declare the name of your set of preferences in the base class

QuizActivity so that they are easily accessible to all subclasses:

public static final String GAME_PREFERENCES = “GamePrefs”;

There is no limit to the number of sets of shared preferences you can create. You
can use the preference name string to divide preferences into categories, such as
game preferences and user preferences. How you organize shared preferences is
up to you.

To add shared preferences to the application, take the following steps:

1. Use the getSharedPreferences() method to retrieve an instance of a

SharedPreferences object.

2. Create a SharedPreferences.Editor object to modify preferences.

3. Make changes to the preferences by using the editor.

4. Commit the changes by using the commit() method in the editor.

Saving Specific Shared Preferences
Each preference is stored as a key/value pair. Preference values can be the following

types:

. Boolean

. Float

. Integer

Did you
Know?

By the
Way

ptg

Running the Game Prototype 107

. Long

. String

After you have decided what preferences you want to save, you need to get an

instance of the SharedPreferences object and use the Editor object to make the

changes and commit them. In the following example, you save two preferences—the

user’s name and age:

import android.content.SharedPreferences;
// ...
SharedPreferences settings =

getSharedPreferences(GAME_PREFERENCES, MODE_PRIVATE);
SharedPreferences.Editor prefEditor = settings.edit();
prefEditor.putString(“UserName”, “JaneDoe”);
prefEditor.putInt(“UserAge”, 22);
prefEditor.commit();

You can also use the shared preferences editor to clear all preferences, using the

clear() method, and to remove specific preferences by name, using the remove()

method.

Retrieving Shared Preferences
Retrieving shared preference values is even simpler than creating them because you

don’t need an editor. The following example shows how to retrieve shared prefer-

ence values:

SharedPreferences settings =
getSharedPreferences(GAME_PREFERENCES, MODE_PRIVATE);

if (settings.contains(“UserName”) == true) {
// We have a user name
String user = Settings.getString(“UserName”, “Default”);

}

You can use the SharedPreferences object to check for a preference by name,

retrieve strongly typed preferences, or retrieve all the preferences and store them in

a map.

Although you have no immediate needs for shared preferences yet in Been There,

Done That! you now have the infrastructure set up to use them as you need them

within all the application activities. This will be handy when you begin to imple-

ment each activity later in the book.

Running the Game Prototype
You are almost ready to run and test your application. But first, you need to create a

debug configuration for your new project within Eclipse.

ptg

108 HOUR 6: Designing an Application Framework

Creating a Debug Configuration
You need to create a debug configuration for each project within Eclipse. Be sure to

set the preferred AVD for the project to one that is compatible with the Google APIs

(API Level 7). If you do not have one configured (or are unsure), simply click the

Android SDK and AVD Manager button in Eclipse. From here, you can determine

which AVDs are appropriate for the application and create new ones, as necessary.

Launching the Prototype in the Emulator
It’s time to launch the Been There, Done That! application in the Android emulator.

You can do this by using the little bug icon in Eclipse or by clicking the Run button

on the debug configuration you just created.

As you can see in Figure 6.8, the application does very little so far. It has a pretty

icon, which a user can click to launch the default activity, QuizSplashActivity.

This activity displays its TextView control, informing you that you have reached the

splash screen. There is no real user interface yet for the application, and you still

need to wire up the transitions between the different activities. However, you now

have a framework to build on. In the next few hours, you will flesh out the different

screens and begin to implement game functionality.

FIGURE 6.8
The prototype
for Been There,
Done That! in
the application
drawer.

ptg

109Summary

Exploring the Prototype Installation
The Been There, Done That! application does very little so far, but you can use tools

on the Android emulator to peek at all you’ve done so far:

. Application Manager—This is helpful for determining interesting informa-

tion about an application. In the emulator, navigate to the home screen, click

the Menu button and choose Settings, Applications, Manage Applications and

then choose the Been There, Done That! item from the list of applications.

Here you can see some basic information about the application, including

storage and permissions used, as well as information about the cache and

so on.

. Dev Tools—This tool helps you inspect the application in more detail. In the

emulator, pull up the application drawer, launch the Dev Tools application, and

choose Package Browser. Navigate to the package name com.androidbook.

triviaquiz. This tool reads information out of the manifest and allows you to

inspect the settings of each activity registered.

Of course, you can also begin to investigate the application by using the DDMS per-

spective of Eclipse. For example, you could check out the application directory for

the com.androidbook.triviaquiz package on the Android file system. You could

also step through the code of QuizSplashActivity.

Summary
In this hour, you built a basic prototype on which you can build in subsequent

chapters. You designed a prototype and defined its requirements in some detail.

Then you created a new Android project, configured it, and created an activity for

each screen. You also added custom layouts and implemented shared preferences for

the application.

ptg

110 HOUR 6: Designing an Application Framework

Q&A
Q. What class might you inherit from to provide an application with consistent

shared components?

A. By creating your own shared Activity base class, you can implement behav-

ior that will exist within each screen.

Q. Can an activity have its own preferences?

A. Yes, preferences can be shared among activities, and an activity can have its

own preferences. To access shared preferences, use the

getSharedPreferences() method. To access activity-level preferences, use the

getPreferences() method.

Q. What two things need to be configured before you can run and debug an
Android application in Eclipse?

A. You need to have configured both an AVD and the debug configuration. Then

you can easily launch your application straight from Eclipse for debugging

and testing.

Workshop

Quiz
1. True or False: The Been There, Done That! application has three activities.

2. What data types are supported within application shared preferences?

A. Boolean, Float, Integer, Long, and String

B. Boolean, Integer, and String

C. All types that are available in Java

3. True or False: You only need to put your base activity class (for example,

QuizActivity) in the Android manifest file.

ptg

Workshop 111

Answers
1. False. The Been There, Done That! application has an activity for each screen.

It also has a base class activity, from which all other activities are derived. The

design has seven total activity classes.

2. A. Boolean, Float, Integer, Long, and String preferences are possible.

3. False. Each activity needs its own entry in the Android manifest file.

Exercises
1. Add a preference to the application preferences called lastLaunch. Have the

QuizSplashActivity read and save the current time each time the

onCreate() method is called. When this preference is read, log it using the

Log.i() method.

2. Create a set of activity-level preferences for QuizSettingsActivity, using the

getPreferences() method instead of the getSharedPreferences() method.

ptg

This page intentionally left blank

ptg

HOUR 7

Implementing an Animated
Splash Screen

What You’ll Learn in This Hour:
. Designing a splash screen
. Updating the splash screen layout
. Working with animation

In this hour, we focus on implementing the splash screen of the Been There, Done That!

application. After roughly sketching the screen design, you can determine exactly what

Android View controls you need to implement the splash.xml layout file. When you are

satisfied with the screen layout, you can add some tweened animations to give the splash

screen some pizzazz. Finally, you need to make sure to transition from the splash screen to

the main menu screen smoothly after your animations have completed.

Designing the Splash Screen
You’ll implement the Been There, Done That! application from the ground up, beginning

with the screen users see first: the splash screen. Recall from Hour 6, “Designing an

Application Framework,” that you had several requirements for this screen. Specifically,

the screen should display some information about the application (title and version infor-

mation) in a visually appealing way and then, after some short period of time, automati-

cally move on to the main menu screen. Figure 7.1 provides a rough design for the splash

screen.

ptg

114 HOUR 7: Implementing an Animated Splash Screen

For the time being, you will focus on designing the splash screen in portrait mode,

but you will try to avoid making the porting effort difficult for landscape or square

orientations. With the simple design of the splash screen, you can be confident that

the elements can scale reasonably well to other orientations, provided that you

tweak font and graphic sizes later. Porting issues is discussed in a future chapter.

Implementing the Splash Screen Layout
Now that you know how your splash screen should look, you need to translate the

rough design into the appropriate layout design. Recall that the /res/layout/

splash.xml layout file is used by QuizSplashActivity. You need to update the

default layout, which simply displays a single TextView control (informing us it is

the splash screen) to contain controls for each of the elements in the rough design.

Screen layout controls come in many forms. Each control is a rectangle that can

control a specific part of the screen. You are using two common screen controls on

your splash screen:

. A TextView control displays a text string onscreen.

. An ImageView control displays a graphic onscreen.

You also need some way to organize various View controls on the screen in an order-

ly fashion. For this, you use Layout controls. For example, LinearLayout allows

placement of child views in a vertical or horizontal stack.

TITLE #1
(Fade In First)

TITLE #2
(Fade In Last)

VERSION INFO

(Some Fun Logo Animation)

FIGURE 7.1
Rough design
for the Been
There, Done
That! splash
screen.

ptg

By the
Way

Implementing the Splash Screen Layout 115

In addition to LinearLayout, there are a number of other Layout controls. Layouts

may be nested and control only part of the screen, or they may control the entire

screen. It is quite common for a screen to be encapsulated in one large parent lay-

out—often a LinearLayout control. Table 7.1 lists the available Layout controls.

TABLE 7.1 Common Layout Controls

Key
Layout Control Name Description Attributes/Elements

LinearLayout Each child view is placed Orientation (vertical or
after the previous one, in horizontal).
a single row or column.

RelativeLayout Each child view is placed in Many alignment attributes
relation to the other views to control where a child
in the layout, or relative to view is positioned relative
the edges of the parent to other child View controls.
layout.

FrameLayout Each child view is stacked The order of placement of
within the frame, relative to child View controls is
the top-left corner. View important, when used with
controls may overlap. appropriate gravity settings.

TableLayout Each child view is a cell in Each row requires a
a grid of rows and columns. TableRow element.

As of Android 1.5 SDK, the AbsoluteLayout control, which requires specific X/Y
values, was deprecated yet has remained available for use. Although this control
is not recommended for use, occasionally having exact X/Y sizing control can be
useful for specific kinds of layouts that require pixel-perfect precision. The SDK’s
own WebView control uses this layout.

Layouts and their child View controls have certain attributes that help control their

behavior. For example, all layouts share the attributes android:layout_width and

android:layout_height, which control how wide and high an item is. These attrib-

ute values can be dimensions, such as a number of pixels, or use a more flexible

approach: fill_parent or wrap_content. Using fill_parent instructs a layout to

scale to the size of the parent layout, and using wrap_content “shrink wraps” the

child View control within the parent, giving it only the space of the child View con-

trol’s dimensions. A number of other interesting properties can be used to control

specific layout behavior, including margin settings and type-specific layout

attributes.

ptg

By the
Way

116 HOUR 7: Implementing an Animated Splash Screen

Let’s use a TableLayout control to display some ImageView controls as part of the

splash screen.

In the splash screen design, you can use a vertical LinearLayout control to organize

the screen elements, which are, in order, a TextView control, a TableLayout control

with some TableRow control elements of ImageView controls, and then two more

TextView controls. Figure 7.2 shows the layout design of the splash screen.

LinearLayout (Vertical Orientation)

TextView (Title #1)

TableRow (Index 0)

TableRow (Index 1)

TextView (Title #2)

TextView (Version Info)

TableLayout (2 Rows, 2 Columns)

ImageView
(splash1.png)

ImageView
(splash2.png)

ImageView
(splash3.png)

ImageView
(splash4.png)

FIGURE 7.2
Layout design
for the Been
There, Done
That! splash
screen.

Adding New Project Resources
Now that you have your layout design for the splash screen, you need to create the

string, color, and dimension resources to use within the layout.

You begin by adding four new graphic resources to the /res/drawable directory

(creating the directory, if necessary): splash1.png, splash2.png, splash3.png, and

splash4.png. These graphics will be displayed in the TableLayout control in the

center of the splash screen.

The code for this project is available on the book website,
http://www.informit.com/title/9780321673350.

http://www.informit.com/title/9780321673350

ptg

Did you
Know?

Implementing the Splash Screen Layout 117

Then you can add three new strings to the /res/values/strings.xml resource file:

one for the top title (Been There), one for the bottom title (Done That!), and one for

some version information (multiple lines). Technically, you can now remove the

splash string because you will no longer be using it.

Next, you create a new resource file called /res/values/colors.xml to contain the

three color resources you need: one for the title text color (a golden yellow), one for

the version text color (grayish white), and one for the version text background color

(deep blue).

Because you will be setting the overall background color of the splash screen to
black, you do not need to create a special resource. Instead, you just use the
built-in Android resource @android:color/black.

Finally, you need to create some dimension resources in a new resource file called

/res/values/dimens.xml. You create three new dimension values: one to control

the title font size (24pt), one to control the version text font size (5pt), and one to

allow for nice line spacing between the lines of the version text (3pt).

After you have saved the resource files, you can begin to use your new resources in

the splash.xml layout resource file.

Updating the Splash Screen Layout
You could modify the existing splash.xml layout, but it is sometimes easier to start

from scratch by using the Eclipse layout resource editor to remove all existing con-

trols. You then take the following steps to generate the layout you want, based on

your intended layout design:

1. Begin by adding a new LinearLayout control and setting its background

attribute to @android:color/black and its orientation to vertical. All

subsequent controls will be added inside the LinearLayout control. It’s often

easiest to use the Outline view of Eclipse to add View controls within one

another or move them around.

2. Add a TextView control called TextViewTopTitle. Set layout_width to

fill_parent and layout_height to wrap_content. Set the control’s text

attribute to the string resource, its textColor attribute to the yellow color

resource, and its textSize to the dimension resource you created.

3. Add a TableLayout control called TableLayout01. Set layout_width to

fill_parent and layout_height to wrap_content. Also, set the

stretchColumns attribute to *, to stretch any column, as necessary, to fit

the screen.

ptg

118 HOUR 7: Implementing an Animated Splash Screen

4. Within the TableLayout control add a TableRow control. Within the

TableRow control add two ImageView controls. For the first ImageView control,

set the src attribute to the splash1.png drawable resource

@drawable/splash1. Add a second ImageView control and set its src attribute

to the splash2.png resource file.

5. Repeat step 4, creating a second TableRow control. Again, add ImageView con-

trols for splash3.png and splash4.png.

6. Much as in step 2, add another TextView control called TextViewBottomTitle

within the parent LinearLayout. Set its layout_width attribute to fill_par-

ent and layout_height to wrap_content. Set its text attribute to the appro-

priate string, its textColor attribute to the yellow color, and its textSize

attribute to the dimension resource you created.

7. For the version information, create one last TextView control, called

TextViewBottomVersion. Set its layout_width attribute to fill_parent and

layout_height to fill_parent. Set its text attribute to the appropriate

string, its textColor attribute to the grayish color, and its textSize attribute

to the dimension resource you created earlier. Also, set its background attrib-

ute to the color resource (dark blue) and lineSpacingExtra to the spacing

dimension resource value you created.

8. Tweak the layout_gravity and gravity settings on the various controls until

you think the layout looks reasonable in the Eclipse resource editor preview.

At this point, save the splash.xml layout file and run the Been There, Done That!

application in the Android emulator. The Splash screen should look as shown in

Figure 7.3.

You could stop here, except that your splash screen still lacks pizzazz. Also, you need

some way to transition from the splash screen to the main menu screen.

ptg

Working with Animation 119

Working with Animation
One great way to add zing to your splash screen would be to add some animation.

The Android platform supports four types of graphics animation:

. Animated GIF images—Animated GIFs are self-contained graphics files with

multiple frames.

. Frame-by-frame animation—The Android SDK provides a similar mecha-

nism for frame-by-frame animation in which the developer supplies the

individual graphic frames and transitions between them (see the

AnimationDrawable class).

. Tweened animation—Tweened animation is a simple and flexible method of

defining specific animation operations that can then be applied to any view

or layout.

. OpenGL ES—Android’s OpenGL ES API provides advanced three-dimensional

drawing, animation, lighting, and texturing capabilities.

For your application, the tweened animation makes the most sense. Android pro-

vides tweening support for alpha (transparency), rotation, scaling, and translating

(moving) animations. You can create sets of animation operations do be done

FIGURE 7.3
The Been There,
Done That!
splash screen.

ptg

Did you
Know?

120 HOUR 7: Implementing an Animated Splash Screen

simultaneously, in a timed sequence, and after a delay. Thus, tweened animation is

a perfect choice for your splash screen.

With tweened animation, you create an animation sequence, either programmati-

cally or by creating animation resources in the /res/anim directory. Each anima-

tion sequence needs its own XML file, but the animation may be applied to any

number of View controls.

You can use the built-in animations provided in the android.R.anim class.

Adding Animation Resources
For your splash screen, you need to create three custom animations in XML and

save them to the /res/anim resource directory: fade_in.xml, fade_in2.xml, and

custom_anim.xml.

The first animation, fade_in.xml, simply fades its target from an alpha value of 0

(transparent) to an alpha value of 1 (opaque) over the course of 2500 milliseconds,

or 2.5 seconds. There is no built-in animation editor in Eclipse. The XML for the

fade_in.xml animation looks like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<set

xmlns:android=”http://schemas.android.com/apk/res/android”
android:shareInterpolator=”false”>
<alpha

android:fromAlpha=”0.0”
android:toAlpha=”1.0”
android:duration=”2500”>

</alpha>
</set>

You can apply this animation to the top TextView control with your title text.

Next, you create the fade_in2.xml animation. This animation does exactly the

same thing as the fade_in animation, except that you set the startOffset attrib-

ute to 2500 milliseconds. This means that this animation will actually take 5 sec-

onds total: It waits 2.5 seconds and then fades in for 2.5 seconds. Because 5 seconds

is long enough to display the splash screen, you should plan to listen for fade_in2

to complete and then transition to the main menu screen.

Finally, you need some fun animation sequence for the TableLayout graphics. In

this case, your animation set contains multiple, simultaneous operations: a rotation,

some scaling, and an alpha transition. As a result, the target View spins into exis-

tence. The custom_anim.xml file looks like this:

ptg

Working with Animation 121

<?xml version=”1.0” encoding=”utf-8” ?>
<set

xmlns:android=”http://schemas.android.com/apk/res/android”
android:shareInterpolator=”false”>
<rotate

android:fromDegrees=”0”
android:toDegrees=”360”
android:pivotX=”50%”
android:pivotY=”50%”
android:duration=”2000” />

<alpha
android:fromAlpha=”0.0”
android:toAlpha=”1.0”
android:duration=”2000”>

</alpha>
<scale

android:pivotX=”50%”
android:pivotY=”50%”
android:fromXScale=”.1”
android:fromYScale=”.1”
android:toXScale=”1.0”
android:toYScale=”1.0”
android:duration=”2000” />

</set>

As you can see, the rotation operation takes 2 seconds to rotate from 0 to

360 degrees, pivoting around the center of the view. The alpha operation should

look familiar; it simply fades in over the same 2-second period. Finally, the scale

operation scales from 10% to 100% over the same 2-second period. This entire ani-

mation takes 2 seconds to complete.

After you have saved all three of your animation files, you can begin to apply the

animations to specific views.

Animating Specific Views
Animations must be applied and managed programmatically. Remember, costly

operations, such as animations, should be stopped if the application is paused for

some reason. The animation can resume when the application comes back into the

foreground.

Let’s start with a simplest case: applying the fade_in animation to your title

TextView control, called TextViewTopTitle. All you need to do is retrieve an

instance of your TextView control in the onCreate() method of the

QuizSplashActivity class, load the animation resource into an Animation object,

and call the startAnimation() method of the TextView control:

TextView logo1 = (TextView) findViewById(R.id.TextViewTopTitle);
Animation fade1 = AnimationUtils.loadAnimation(this, R.anim.fade_in);
logo1.startAnimation(fade1);

ptg

122 HOUR 7: Implementing an Animated Splash Screen

When an animation must be stopped—for instance, in the onPause() method of the

activity—you simply call the clearAnimation() method. For instance, the following

onPause() method demonstrates this for the corner logos:

@Override

protected void onPause() {
super.onPause();
// Stop the animation
TextView logo1 = (TextView) findViewById(R.id.TextViewTopTitle);
logo1.clearAnimation();

TextView logo2 = (TextView) findViewById(R.id.TextViewBottomTitle);
logo2.clearAnimation();

// ... stop other animations
}

Animating All Views in a Layout
In addition to applying animations to individual View controls, you can also apply

them to each child View control within a Layout (such as TableLayout and each

TableRow), using LayoutAnimationController.

To animate View controls in this fashion, you must load the animation, create

LayoutAnimationController, configure it as necessary, and then call the layout’s

setLayoutAnimation() method. For example, the following code loads the cus-

tom_anim animation, creates a LayoutAnimationController, and then applies it to

each TableRow in the TableLayout control:

Animation spinin = AnimationUtils.loadAnimation(this, R.anim.custom_anim);
LayoutAnimationController controller =

new LayoutAnimationController(spinin);
TableLayout table = (TableLayout) findViewById(R.id.TableLayout01);
for (int i = 0; i < table.getChildCount(); i++) {

TableRow row = (TableRow) table.getChildAt(i);
row.setLayoutAnimation(controller);

}

There is no need to call any startAnimation() method in this case because

LayoutAnimationController handles that for you. Using this method, the anima-

tion is applied to each child view, but each starts at a different time. (The default is

50% of the duration of the animation—which, in this case, would be 1 second.) This

gives you the nice effect of each ImageView spinning into existence in a cascading

fashion.

Stopping LayoutAnimationController animations is no different from stopping

individual animations: You simply use the clearAnimation() method. The addi-

tional lines to do this in the existing onPause() method are shown here:

ptg

Summary 123

TableLayout table = (TableLayout) findViewById(R.id.TableLayout01);
for (int i = 0; i < table.getChildCount(); i++) {

TableRow row = (TableRow) table.getChildAt(i);
row.clearAnimation();

}

Handling Animation Life Cycle Events
Now that you are happy with your animations, you just need to make

QuizSplashActivity transition to QuizMenuActivity when the animations

are complete. To do this, you create a new Intent control to launch the

QuizMenuActivity class and call the startActivity() method. You should also

call the finish() method of QuizSplashActivity because you do not want to keep

this activity on the stack (that is, you do not want the Back button to return to this

screen).

Of your animations, the fade_in2 animation takes the longest, at 5 seconds total.

This animation is therefore the one you want to trigger your transition upon. You do

so by creating an AnimationListener object, which has callbacks for the animation

life cycle events: start, end, and repeat. In this case, only the onAnimationEnd()

method has an interesting implementation. Here is the code to create the

AnimationListener and implement the onAnimationEnd() callback:

Animation fade2 = AnimationUtils.loadAnimation(this, R.anim.fade_in2);
fade2.setAnimationListener(new AnimationListener() {

public void onAnimationEnd(Animation animation) {
startActivity(new Intent(QuizSplashActivity.this,

QuizMenuActivity.class));
QuizSplashActivity.this.finish();

}
});

Now if you run the Been There, Done That! application again, either on the emula-

tor or on the handset, you see some nice animation on the splash screen. The user

then transitions smoothly to the main menu screen, which is the next screen on

your to-do list.

Summary
Congratulations! You’ve now implemented the first screen of the Been There, Done

That! trivia quiz. In this hour, you designed a screen and then identified the appro-

priate layout and View components needed to implement your design. After you

included the appropriate resources, you were able to configure the splash.xml lay-

out file. Finally, you added some tweened animations to the screen and then han-

dled the transition between QuizSplashActivity and QuizMenuActivity.

ptg

124 HOUR 7: Implementing an Animated Splash Screen

Q&A
Q. How well does the Android platform perform with regard to animation?

A. The Android platform has reasonable performance with animations. However,

it is very easy to overload a screen with animations and other controls. For

example, if you were to place a VideoView control in the middle of the screen

with all the animations, you might see distinct performance issues. Always

test operations, such as animations, on a handset to be sure your implementa-

tion is feasible.

Q. Why did you iterate through each child view of the TableLayout control
instead of accessing each TableRow control (R.id.TableRow01 and
R.id.TableRow02) by name?

A. It would be perfectly acceptable to access each TableRow element by name if

each one is guaranteed to exist in all cases. You will be able to take advantage

of this iterative approach later, when you port your project to different screen

orientations. For now, the Splash screen draws well only in portrait mode.

Q. What would happen if you applied LayoutAnimationController to
TableLayout instead of each TableRow?

A. If you applied LayoutAnimationController to TableLayout, each TableRow

control—instead of each ImageView control—would spin into existence. It

would be a different, less visually appealing, effect.

Workshop

Quiz
1. True or False: There is no way to stop an animation once it has started.

2. What types of operations are supported with tweened animation?

A. Transparency, motion, and 3D rotation

B. Alpha, scale, rotate, and translate

C. Dance, sing, and be merry

3. True or False: LinearLayout can be used to allow all child View objects to

draw above and below each other (vertical).

ptg

Workshop 125

4. Which of these is not a built-in layout in the Android SDK?

A. FrameLayout

B. CircleLayout

C. HorizontalLayout

D. RelativeLayout

Answers
1. False. Use the clearAnimation() method to clear all pending and executing

animations on a given view.

2. B. Tweened animation can include any combination of alpha transitions

(transparency), scaling (growth or shrinking), two-dimensional rotation, and

translation (moving) from one point to another.

3. True. In addition, LinearLayout can be used for all child View objects to draw

to the left and right of each other (horizontal).

4. B and C. FrameLayout and RelativeLayout are both included in the

Android SDK.

Exercises
1. Modify LayoutAnimationController to apply animations of each child view

within a TableRow control in random order by using the setOrder() method

with a value of 2 (random).

2. Modify LayoutAnimationController to apply animations to each child view

within a TableLayout control instead of each TableRow control. View the

resulting animation.

3. Modify the splash screen layout to play a short video instead of animating the

ImageView controls. First replace the TableLayout control with a VideoView

control. Then set the URI of VideoView to the URL of a web video in the

appropriate format, using the Uri.parse() method and the VideoView con-

trol’s setVideoURI() method. Finally, remove AnimationListener and use a

VideoView control’s OnCompletionListener instead to transition to the main

menu screen when the video completes.

ptg

This page intentionally left blank

ptg

HOUR 8

Implementing the Main Menu
Screen

What You’ll Learn in This Hour:
. Designing the main menu screen

. Implementing the main menu screen layout

. Working with ListView controls

. Working with other menu types

In this hour, you learn about some of the different menu mechanisms available in

Android. You begin by implementing the main menu screen of the Been There, Done

That! application, using new controls, such as ListView and RelativeLayout. You then

learn about other screens that can benefit from special types of menus, such as the

options menu.

Designing the Main Menu Screen
To design the main menu screen, you begin by roughly sketching what you want it to look

like. If you review the screen requirements, you see that this screen provides essential navi-

gation for the rest of the application. Users can choose from four different options: play

the game, review the help, configure the settings, or view the high scores. Figure 8.1 shows

a rough design of the main menu screen.

ptg

128 HOUR 8: Implementing the Main Menu Screen

There are a number of different ways you could implement the main menu screen.

For example, you could create a button for each option, listen for clicks, and funnel

the user to the appropriate screen. However, if the number of options grows, this

method would not scale well. Therefore, a list of the options, in the form of a

ListView control, is more appropriate. This way, if the list becomes longer than the

screen, you have built-in scrolling capability.

In addition to the screen layout, you want the main menu screen to have some bells

and whistles. You begin with the default behavior of each layout control and then

add some custom flair to those controls. For example, you could add a nice back-

ground image behind the entire screen and add a custom selection graphic to the

ListView control.

Finally, you wire up the ListView control to ensure that when a user clicks on a spe-

cific list option, he or she is taken to the appropriate screen. This will allow users to

easily access the rest of the screens you need to implement within the Been There,

Done That! application.

Screen Title

Picture

Game Features
Play, Scores, Settings, and Help

FIGURE 8.1
Rough design
for the Been
There, Done
That! main
menu screen.

ptg

Designing the Main Menu Screen 129

Determining Main Menu Screen Layout
Requirements
Now that you know how you want your main menu screen to look, you need to

translate your rough design into the appropriate layout design. In this case, you

need to update the /res/layout/menu.xml layout file that is used by

QuizMenuActivity. In the case of the main menu layout, you want some sort of

header, followed by a ListView control and then an ImageView control.

Building the Screen Header with RelativeLayout
You know you want to display a TextView control for the screen title in the header.

Wouldn’t it be nice if you also included graphics on each side of the TextView con-

trol? This is a perfect time to try out RelativeLayout, which allows each child view

to be placed in relation to the parent layout or other child view controls. Therefore,

you can easily describe the header as a RelativeLayout control with three child

layouts:

. An ImageView control aligned to the top left of the parent control

. A TextView control aligned to the top center of the parent control

. An ImageView control aligned to the top right of the parent control

Adding the ListView Control
Next in your layout, you include the ListView control. A ListView control is simply

a container that holds a list of View objects. The default is for a ListView control to

contain TextView controls, but ListView controls may contain many different View

controls.

A ListView control of TextView controls works fine for this example. To override

the default behavior of each child TextView, you need to make a layout resource to

act as the template for each TextView control in the ListView control. Also, you

can make the menu more interesting by adding a custom divider and selector to the

ListView control.

ptg

130 HOUR 8: Implementing the Main Menu Screen

Finishing Touches for the Main Menu Layout
You finish off the layout by adding the ImageView control after the ListView con-

trol. As before, you need to wrap your screen in a vertically oriented LinearLayout

control so that the RelativeLayout, ListView, and ImageView controls are shown

in a top-down fashion. Figure 8.2 shows the layout design of the main menu screen.

LinearLayout (Vertical Orientation)

RelativeLayout

ListView

Item (0)

Item (1)

Item (2)

Item (3)

ImageView ImageViewTextView (Title)

TextView (“Play Game”)

TextView (“View Scores”)

TextView (“Settings”)

TextView (“Help”)

ImageView

FIGURE 8.2
Layout design
for the Been
There, Done
That! main
menu screen.

ptg

Implementing the Main Menu Screen Layout 131

Implementing the Main Menu Screen
Layout
To implement the main menu screen, you begin by adding new resources to the

project. Then you must update the menu.xml layout resource to reflect the main

menu screen design.

Adding New Project Resources
Now that you have your layout designed, you need to create the drawable, string,

color, and dimension resources you will use in the layouts used by the main menu

screen.

You begin by adding four new graphic resources to the /res/drawable directory:

bkgrnd.jpg, divider.png, half.png, and textured.png. LinearLayout will use

the bkgrnd.jpg graphic file as the background image. The ListView control will

use the divider.png and textured.png graphics for the custom divider and selec-

tor, respectively. The ImageView control will use the half.png graphic at the bottom

of the screen.

You continue by adding and modifying several new strings in the

/res/values/strings.xml resource file so that you have a string for each menu

option, as well as one for the title TextView control.

Finally, update the color resources in /res/menu/colors.xml to include colors for

the screen title TextView attributes as well as the TextView items displayed within

the ListView. You should also update the resources in /res/values/dimens.xml to

include dimensions for the title text and the ListView item text.

For specific resource configurations, you can use the values provided in the book

source code as a guide, or configure your own custom values.

After you have saved the resource files, you can begin to use them in the layout

resource files used by the main menu screen.

Updating the Main Menu Screen Layouts
Perhaps you have noticed by now that the main menu screen relies on layout

resource files—plural. The master layout file, menu.xml, defines the layout of the

overall screen. You must also create a new layout file template for each item in your

ListView control.

ptg

Did you
Know?

132 HOUR 8: Implementing the Main Menu Screen

Updating the Master Layout
Again, you open the Eclipse layout resource editor and remove all existing controls

from the menu.xml layout file. You then follow these steps to generate the layout

you want, based on your intended layout design:

1. Add a new LinearLayout control and set its background attribute to

@drawable/bkgrnd. All subsequent controls will be added inside this

LinearLayout control.

2. Add a RelativeLayout control. Set its layout_width attribute to wrap_con-

tent and its layout_height attribute to wrap_content.

3. Within the RelativeLayout control, add an ImageView control. Set the

ImageView control’s layout_alignParentLeft and layout_alignParentTop

attributes to true. Set the image’s src attribute to the @drawable/quizicon

graphic.

4. Still within the RelativeLayout control, add a TextView control for the title

text. Set the TextView control’s text, textSize, and textColor attributes to

the resources you just created. Then set the layout_centerHorizontal and

layout_alignParentTop attributes to true.

You can make TextView text “glow” by setting the shadow attributes, including
shadowColor, shadowDx, shadowDy, and shadowRadius.

5. Finish the RelativeLayout control by adding one more ImageView control.

Set the control’s layout_alignParentRight and layout_alignParentTop

attributes to true. Set the image’s src attribute to the @drawable/quizicon

graphic.

6. Next, we must add a second RelativeLayout to hold the ListView and

ImageView controls. Start by adding a new RelativeLayout outside of the one

we were just working in, but still inside the LinearLayout.

7. Now add the last ImageView control inside this new RelativeLayout. Set its

src attribute to the @drawable/half graphic, its layout_width attribute to

fill_parent, and its layout_height attribute to fill_parent to ensure that

the control fills any space at the bottom of the screen. Additionally, set its

layout_alignParentBottom attribute to true and scaleType attribute to

fitEnd, so that after it scales it’ll still be at the bottom.

ptg

Did you
Know?

Watch
Out!

Implementing the Main Menu Screen Layout 133

8. Now add a ListView control called ListView_Menu just below the ImageView.

Set its layout_width attribute to fill_parent and layout_height attribute

to wrap_content. Additionally, set its layout_alignParentTop attribute to

true. We add this second attribute so the control will draw over the top of the

image.

At this point, save the menu.xml layout file.

The Eclipse layout resource editor does not display ListView controls in design
mode. You must view a ListView control by using the Android emulator. In this
case, the layout designer does not reflect actual application look and feel.

Adding the ListView Template Layout
You now need to create a new layout called /res/layout/menu_item.xml that will

serve as a template for your ListView items. In this case, the menu_item.xml layout

file will contain a TextView control.

The TextView control has all the typical attributes assigned except for one: the text

itself. The text attribute will be supplied by the ListView control. At this point, you

can tweak the TextView attributes for textColor and textSize, which you created

as color and dimension resources earlier.

The menu_item.xml file looks like this:

<TextView
xmlns:android=”http://schemas.android.com/apk/res/android”
android:layout_width=”fill_parent”
android:textSize=”@dimen/menu_item_size”
android:text=”test string”
android:layout_gravity=”center_horizontal”
android:layout_height=”wrap_content”
android:shadowRadius=”5”
android:gravity=”center”
android:textColor=”@color/menu_color”
android:shadowColor=”@color/menu_glow”
android:shadowDy=”3”
android:shadowDx=”3” />

It can be helpful to set the text attribute to a test string so you can see how the
TextView control’s attributes look in the Eclipse resource designer. This string will
be programmatically overwritten by the ListView control.

At this point, save the menu_item.xml layout file.

ptg

134 HOUR 8: Implementing the Main Menu Screen

Working with the ListView Control
Now you should switch your focus to the QuizMenuActivity.java file. Here you

need to flesh out the ListView control. First, you need to fill the ListView control

with content, and then you need to listen for user clicks on specific items in the

ListView control and send the user to the appropriate screen.

Filling a ListView Control
Your ListView control needs content. ListView controls can be populated from a

variety of data sources, including arrays and databases, using data adapters. In this

case, you have a fixed list of four items, so a simple String array is a reasonable

choice for your ListView data.

Begin by retrieving an instance of the ListView control just after the

setContentView() method call in the onCreate() method of your activity. To pop-

ulate your ListView control, you must first retrieve it by using the findViewById()

method, as follows:

ListView menuList = (ListView) findViewById(R.id.ListView_Menu);

Next, you need to define the String values you will use to populate the TextView

items within the ListView control. In this case, you will load the four resource

strings representing the choices:

String[] items = { getResources().getString(R.string.menu_item_play),
getResources().getString(R.string.menu_item_scores),
getResources().getString(R.string.menu_item_settings),
getResources().getString(R.string.menu_item_help) };

Now that you have retrieved the ListView control and have the data you want to

stuff into it, you need to use a data adapter to map the data to the layout template

you created (menu_item.xml). The choice of adapter depends on the type of data

being used. In this case, you use ArrayAdapter:

ArrayAdapter<String> adapt = new ArrayAdapter<String>(this,
R.layout.menu_item, items);

Next, you need to tell the ListView control to use the adapter:

menuList.setAdapter(adapt);

At this point, you can save the QuizMenuActivity.java file and run the Been

There, Done That! application in the Android emulator. After the splash screen fin-

ishes, the main menu screen should look much like the screen shown in Figure 8.3.

ptgDid you
Know?

Working with the ListView Control 135

If you get tired of watching the splash screen appear when you launch the applica-
tion, simply modify the AndroidManifest.xml file to launch QuizMenuActivity
by default until you are done testing.

As you can see, the main menu screen is beginning to take shape. However, clicking

the menu items doesn’t yet have the desired response.

Listening for ListView Events
You need to listen for and respond to specific events within the ListView control.

Although there are a number of events to choose from, you are most interested in

the event that occurs when a user clicks an item in the ListView control.

To listen for item clicks, you use the setOnItemClickListener() method of the

ListView. Specifically, you implement the onItemClick() method of the

AdapterView.OnItemClickListener class, like this:

menuList.setOnItemClickListener(new AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent, View itemClicked,

int position, long id) {
TextView textView = (TextView) itemClicked;
String strText = textView.getText().toString();
if (strText.equalsIgnoreCase(getResources().getString(

R.string.menu_item_play))) {
// Launch the Game Activity
startActivity(new Intent(QuizMenuActivity.this,

QuizGameActivity.class));

FIGURE 8.3
The Been There,
Done That!
splash screen.

ptg

Did you
Know?

136 HOUR 8: Implementing the Main Menu Screen

} else if (strText.equalsIgnoreCase(getResources().getString(
R.string.menu_item_help))) {

// Launch the Help Activity
startActivity(new Intent(QuizMenuActivity.this,

QuizHelpActivity.class));
} else if (strText.equalsIgnoreCase(getResources().getString(

R.string.menu_item_settings))) {
// Launch the Settings Activity
startActivity(new Intent(QuizMenuActivity.this,

QuizSettingsActivity.class));
} else if (strText.equalsIgnoreCase(getResources().getString(

R.string.menu_item_scores))) {
// Launch the Scores Activity
startActivity(new Intent(QuizMenuActivity.this,

QuizScoresActivity.class));
}

}
});

The onItemClick() method passes in all the information needed to determine

which item was clicked. In this case, one of the simplest ways is to cast the view

clicked to a TextView control (because you know all items are TextView controls,

although you might want to verify this by using instanceof) and just extract the

specific Text control and map it to the appropriate screen. Another way to deter-

mine which item was clicked would be to check the View control’s id attribute.

Now if you implement the OnItemClickListener() method and rerun the applica-

tion in the emulator, you can use the main menu to transition between the screens

in the Been There, Done That! application.

Customizing ListView Control Characteristics
Now you’re ready to customize the rather bland (especially for a game menu)

default ListView control with a custom divider and selection graphics. A ListView

control has several parts—a header, the list of items, and a footer. By default, the

ListView control displays no header or footer.

If you have a screen with only a ListView control, consider using the
ListActivity class, which simplifies ListView management.

Adding a Custom Divider
A ListView divider is displayed between each ListView item. The divider attribute

can be either a color or a drawable graphic resource. If a color is specified, then a

horizontal line (whose thickness is configurable) will be displayed between items in

the list. If a drawable graphic resource is used, the graphic will appear between

items. By default, no divider is displayed above the first list item nor below the last.

ptg

▼

Working with the ListView Control 137

Adding a Custom Selector
A ListView selector indicates which list item is currently selected within the list. The

ListView selector is controlled by the listSelector attribute. The default selector

of a ListView control is a bright orange band.

Try It Yourself
To add a divider to the ListView control, simply open the menu.xml layout file and

change the ListView control’s divider attribute to the @drawable/divider graphic

resource (a squiggly yellow line) you added earlier.

Now, add a custom selector to the ListView control. To do this, simply open the

menu.xml layout file and change the ListView control’s listSelector attribute

to the @drawable/textured graphic resource (a textured orange halo) you added

earlier.

If you make the changes to the ListView divider and selector and re-launch the

Been There, Done That! application in the emulator, the main menu screen should

look as shown in Figure 8.4.

▲

FIGURE 8.4
The Been There,
Done That!
main menu
screen with a
customized
ListView
control.

ptg

138 HOUR 8: Implementing the Main Menu Screen

Working with Other Menu Types
The Android platform has two other types of useful menu mechanisms:

. Context menus—A context menu pops up when a user performs a long-click

on any View object. This type of menu is often used in conjunction with

ListView controls filled with similar items, such as songs in a playlist. The

user can then long-click on a specific song to access a context menu with

options such as Play, Delete, and Add to Playlist for that specific song.

. Options menus—An options menu pops up whenever a user clicks the Menu

button on the handset. This type of menu is often used to help the user handle

application settings and such.

Because we’ve been focusing on application screen navigation in this hour, let’s con-

sider where these different menus are appropriate in the Been There, Done That!

application. This application design lends itself well to an options menu for the

game screen, which would enable the user to pause while answering trivia questions

to access the settings and help screens easily and then return to the game screen.

Adding an Options Menu to the Game Screen
To add an options menu to the game screen, you need to add a special type of

resource called a menu resource. You can then change QuizGameActivity class to

enable an options menu and handle menu selections.

Adding Menu Resources
For your options menu, you create a menu definition resource in XML and save it to

the /res/menu resource directory as gameoptions.xml.

A menu resource contains a <menu> tag followed by a number of <item> child ele-

ments. Each <item> element represents a menu option and has a number of attrib-

utes. The following are some commonly used attributes:

. id—This attribute allows you to easily identify the specific menu item.

. title—This attribute is the string shown for the options menu item.

. icon—This is a drawable resource representing the icon for the menu item.

Your options menu will contain only two options: Settings and Help. Therefore, your

gameoptions.xml menu resource is fairly straightforward:

ptg

Did you
Know?

Working with Other Menu Types 139

<menu
xmlns:android=”http://schemas.android.com/apk/res/android”>
<item

android:id=”@+id/settings_menu_item”
android:title=”@string/menu_item_settings”
android:icon=”@android:drawable/ic_menu_preferences”></item>

<item
android:id=”@+id/help_menu_item”
android:title=”@string/menu_item_help”
android:icon=”@android:drawable/ic_menu_help”></item>

</menu>

You set the title attribute of each menu option by using the same String resources

you used on the main menu screen. Note that instead of adding new drawable

resources for the options menu icons, you use built-in drawable resources from the

Android SDK to have a common look and feel across applications.

You can use the built-in drawable resources provided in the android.R.drawable
class just as you would use resources you include in your application package. If
you want to see what each of these shared resources looks like, check the
Android SDK installed on your machine. Specifically, browse the /platforms direc-
tory, choose the appropriate target platform, and check its /data/res/drawable
directory.

Adding an Options Menu to an Activity
For an options menu to show when the user presses the Menu button on the game

screen, you must provide an implementation of the onCreateOptionsMenu()

method in the QuizGameActivity class. Specifically, you need to inflate (load) the

menu resource into the options menu and set the appropriate Intent information

for each menu item. Here is a sample implementation of the

onCreateOptionsMenu() method for QuizGameActivity:

@Override

public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);
getMenuInflater().inflate(R.menu.gameoptions, menu);
menu.findItem(R.id.help_menu_item).setIntent(

new Intent(this, QuizHelpActivity.class));
menu.findItem(R.id.settings_menu_item).setIntent(

new Intent(this, QuizSettingsActivity.class));
return true;

}

ptg

Did you
Know?

140 HOUR 8: Implementing the Main Menu Screen

Handling Options Menu Selections
To listen for when the user launches the options menu and selections a menu

option, you implement the onOptionsItemSelected() method of the activity. For

example, you start the appropriate activity by extracting the intent from the menu

item selected as follows:

@Override

public boolean onOptionsItemSelected(MenuItem item) {
super.onOptionsItemSelected(item);
startActivity(item.getIntent());
return true;

}

The method given here for handling onOptionsItemSelected() works as
designed. It’s not technically required if the only thing your menu will do is launch
the Intent set via the setIntent() method. However, to add any other function-
ality to each MenuItem requires the implementation of this method.

There you have it: You have created an options menu on the game screen. If you

save the class and run the application once more, you will see that you can navi-

gate to the game screen, press the Menu button, and use a fully functional options

menu (see Figure 8.5).

FIGURE 8.5
The Been There,
Done That!
game screen
with an options
menu.

ptg

141Workshop

Summary
You’ve made excellent progress. The main menu screen is now fully functional, and

you’ve learned key skills for developing Android applications, including how to use

new layouts such as RelativeLayout, as well as how to use the powerful ListView

control. You’ve also learned about the other types of navigation mechanisms avail-

able in Android and implemented an options menu on the game screen.

Q&A
Q. What is the difference between a ListView control’s setOnClickListener()

method and the setOnItemClickListener() method?

A. The setOnClickListener() method listens for a click anywhere in the entire

ListView control. The setOnItemClickListener() method listens for a click

in a specific View item within the ListView control.

Q. There is no default item selected in the ListView control I created. How can
I have it default to a specific item?

A. To have a ListView control highlight a specific list item by default, use the

setSelection() method.

Workshop

Quiz
1. True or False: Context menus are launched using the Menu button.

2. What mechanism acts as the “glue” between a data source and a ListView

control?

A. A database

B. An interpolator

C. A data adapter

ptg

142 HOUR 8: Implementing the Main Menu Screen

3. What type of layout is most appropriate for aligning child View controls in

relation to the parent control?

A. RelativeLayout

B. AbsoluteLayout

C. LinearLayout

4. True or False: Using ListActivity is a convenient way to build screens that

are just ListView objects.

Answers
1. False. Options menus are launched using the Menu button. Context menus

are launched using a long-click on a View control.

2. C. A data adapter, such as ArrayAdapter, is used to match a data source to

the layout template used by a ListView control to display each list item.

3. A. RelativeLayout is especially handy when its child View controls need to

be aligned to the top, bottom, left, right, and center of the parent layout.

RelativeLayout can also be used to position child View controls relative to

one another inside the parent layout.

4. True. ListActivity simplifies the handling of ListView controls.

Exercises
1. Review some of the other data adapters available for use with the ListView

control. Update the ListView control so that each list item contains an

ImageView icon and the TextView control. (Hint: Implement a custom data

adapter.)

2. Add a third option to the game screen’s options menu to allow the user to

access the scores screen.

3. Modify the LinearLayout control of menu.xml to include an animation that

fades in so that the entire main menu screen fades in.

ptg

HOUR 9

Developing the Help and
Scores Screens

What You’ll Learn in This Hour:
. Designing and implementing the help screen

. Working with files

. Designing and implementing the scores screen

. Designing screens with tabs

. Working with XML

In this hour, you implement two more screens of the Been There, Done That! application:

the help and scores screens. You begin with the help screen, using a TextView control with

text supplied from a text file, which allows you to explore some of the file support classes

of the Android SDK. Next, you design and implement the scores screen. With its more

complicated requirements, the scores screen is ideal for trying out the tab set control called

TabHost. Finally, you test the scores screen by parsing mock XML score data and display-

ing the appropriate information on each tab.

ptg

144 HOUR 9: Developing the Help and Scores Screens

Designing the Help Screen
The help screen requirements are straightforward: This screen must display a large

quantity of text and have scrolling capability. Figure 9.1 shows a rough design of

the help screen.

FIGURE 9.1
Rough design
for the Been
There, Done
That! help
screen.

Screen Title

Game Help Text
(Vertical Scrolling)

You want the application screens to share some common features. Therefore, you

can have the help screen mimic some of the menu screen features such as a header.

To translate your rough design into the appropriate layout design, you need to

update the /res/layout/help.xml layout file and the QuizHelpActivity class.

You want the same sort of title header you used in the menu screen (using a

RelativeLayout), followed by a TextView control with scrolling capability.

Figure 9.2 shows the layout design for the help screen.

ptg

Implementing the Help Screen Layout 145

Implementing the Help Screen Layout
To implement the help screen, you begin by adding new resources to the project.

Then you must update the help.xml layout resource to reflect the help screen

design.

Adding New Project Resources
In addition to any new string, color, and dimension resources you use within the

layout for the help screen, you also need to add a new type of resource: a raw file

resource file. In this instance, you include a text file called /res/raw/quizhelp.txt

that includes a number of paragraphs of help text, which you will display in the

main TextView control of the help screen.

FIGURE 9.2
Layout design
for the Been
There, Done
That! help
screen.

LinearLayout (Vertical Orientation)

ImageView ImageViewTextView (Title)

RelativeLayout

TextView

ptg

Did you
Know?

Did you
Know?

Did you
Know?

146 HOUR 9: Developing the Help and Scores Screens

You can also include large bodies of text as string resources. This can be helpful
for internationalization. Using a string resource also allows you to take advantage
of the built-in support for some HTML-style tags. In this case, we’ve used a text
file to demonstrate the use of raw file resources.

Updating the Help Screen Layout
The help.xml layout file dictates the user interface of the help screen. At this point,

you open the Eclipse layout resource editor and remove all existing controls from

the layout. You then follow these steps to generate the layout you want, based on

the screen design:

1. Add a new LinearLayout control and set its background attribute to @draw-

able/bkgrnd. All subsequent controls will be added inside the LinearLayout

control.

2. Add the same header you created in the menu.xml layout. It should contain a

RelativeLayout control with two ImageView controls and a TextView con-

trol. Set the TextView control’s text attribute to the string resource called

@string/help to reflect the appropriate screen title.

3. Outside the RelativeLayout control but still within the LinearLayout con-

trol, add a TextView control called TextView_HelpText. Set its layout_width

attribute to fill_parent and its layout_height attribute to fill_parent.

You can automatically link phone numbers, web addresses, email addresses, and
postal addresses that show in the TextView control to the Android Phone Dialer,
Web Browser, Email, and Map applications by setting the linksClickable attri-
bute to true and the autoLink attribute to all for the TextView control.

At this point, save the help.xml layout file.

You can make TextView control text bold or italic by using the textStyle
attribute.

ptg

By the
Way

Did you
Know?

Working with Files 147

Working with Files
Now that the help.xml layout file is complete, you need to update the

QuizHelpActivity class to read the quizhelp.txt file and save the resulting text

into the TextView control called TextView_HelpText.

Adding Raw Resource Files
Raw resource files, such as the quizhelp.txt text file, can be added to the project

by simply including them in the /raw resources project directory. This can be done

by either creating them as a new file, dragging them in from a file management

tool, or any other way you’re accustomed to adding files to Android projects in

Eclipse.

Each Android application has its own private directory on the Android file system
for storing application files. In addition to all the familiar File and Stream class-
es available, you can access private application files and directories by using the
following Context class methods: fileList(), getFilesDir(), getDir(),
openFileInput(), openFileOutput(), deleteFile(), and
getFileStreamPath().

Accessing Raw File Resources
The Android platform includes many of the typical Java file I/O classes, including

stream operations. To read string data from a file, use the openRawResource()

method, as in the following example:

InputStream iFile = getResources().openRawResource(R.raw.quizhelp);

Now that you have an InputStream object, you can read the file, line-by-line or

byte-by-byte, and create a string. There are a number of ways to do this. When you

have a proper string with the help text, you simply retrieve the TextView control

using the findViewById() method and set the text using the TextView control’s

setText() method, as follows:

TextView helpText = (TextView) findViewById(R.id.TextView_HelpText);
String strFile = inputStreamToString(iFile);
helpText.setText(strFile);

The previous text references a helper method called inputStreamToString()
which is available with the QuizHelpActivity class implementation provided with
this book. The method simply reads in an InputStream and returns a String of
the contents.

ptg

▼

148 HOUR 9: Developing the Help and Scores Screens

Try It Yourself
Now that you have the help screen displaying the appropriate information, you

might want to improve the look of it to more closely match Figure 9.3. Start by

changing the font size of the help text in the TextView control. Then consider

changing other attributes, such as padding, font, text colors, and so on. For more

information, see the attributes configured in the TextView implementation provided

with the book code.

FIGURE 9.3
The Been There,
Done That! help
screen.

At this point, save the QuizHelpActivity.java file and run the Been There, Done

That! application in the Android emulator. After the splash screen finishes, choose

the help screen option from the main menu. The help screen should look much like

Figure 9.3.

▲

ptg

Designing the Scores Screen 149

Designing the Scores Screen
Now that you’ve created the help screen, you can turn your attention to another

screen with somewhat similar features: the scores screen. The requirements for

this screen include showing several different scores to the user. There are two types

of scores: the all-time-high scores and the user’s friends’ scores. You want to show

both on the same screen. Each screen shown will include the user’s name, score, and

overall ranking.

There are a number of ways you could implement the scores screen. For example,

you could use a TextView control or ListView control to display the score informa-

tion. However, you are working with a small screen, and you don’t want to over-

whelm the user with too much information. Because you have two different sets of

data to display, two tabs would be ideal for this screen. Figure 9.4 shows a rough

design of the scores screen.

FIGURE 9.4
Rough design
for the Been
There, Done
That! scores
screen.

Screen Title

Tab #1 (“All Scores”) Tab #2 (“Friends’ Scores”)

Game Score Sample Tab
(Name, Score, Rank)

ABC
DEF
GHI

12345
12344
12343

#1
#2
#3

ptg

150 HOUR 9: Developing the Help and Scores Screens

Determining Scores Screen Layout Requirements
Now that you know how you want your scores screen to look, you need to translate

your rough design into the appropriate layout design. In this case, you need to

update the /res/layout/scores.xml layout file that is used by the

QuizScoresActivity class. In the case of the scores layout, you can again take

advantage of the RelativeLayout control to add a familiar title bar to the top of

the scores screen. In this case, the header will be followed by a TabHost control with

two tabs, each of which will be a TableLayout control of scores—one tab for all

scores and one for friends’ scores.

Adding the TabHost Control
To add tabbing support to the scores screen, you include a TabHost control, which is

a container with child tabs, each of which may contain some layout content.

TabHost is a somewhat complex control. In order to configure it within an XML lay-

out file, you need to follow a set of guidelines:

. Include a TabHost control

. Ensure that there is a LinearLayout within the TabHost control

. Ensure that there is a specially named TabWidget control and FrameLayout

control within the LinearLayout control

. Define the contents of each tab in the FrameLayout control

Figure 9.5 shows the layout design for the scores screen.

ptg

Implementing the Scores Screen Layout 151

Implementing the Scores Screen Layout
To implement the scores screen, you begin by adding new resources to the project.

Then you need to update the scores.xml layout resource to reflect the scores screen

design.

Adding New Project Resources
In addition to the new string, color, and dimension resources you use in the scores

screen layout, you must also add a new type of resource: an XML file resource file.

LinearLayout (Vertical Orientation)

RelativeLayout

ImageViewImageView TextView (Title)

LinearLayout

FrameLayout

TableLayout (TableLayout_AllScores)

TableLayout (TableLayout_FriendScores)

TableRow (Header)

TabWidget

TabHost

TableRow

(One for each score)

TableRow (Header)

TableRow

(One for each score)

FIGURE 9.5
Layout design
for the Been
There, Done
That! scores
screen.

ptg

Watch
Out!

152 HOUR 9: Developing the Help and Scores Screens

The scores for the Been There, Done That! application will eventually be sourced

from a remote server, but for now, you can build the screen and use some mock

score data. This mock score data will be provided in XML, so you can mimic the

structure you will use when the real scores are available.

In this instance, you include in the /res/xml/ resource directory two XML files—

allscores.xml and friendscores.xml—that represent the mock score data:

<?xml version=”1.0” encoding=”utf-8”?>
<!— This is a mock score XML chunk —>

<scores>
<score

username=”LED”
score=”12345”
rank=”1” />

<score
username=”SAC”
score=”12344”
rank=”2” />

<score
username=”NAD”
score=”12339”
rank=”3” />

</scores>

The score data uses a very simple schema. A single <scores> element has a number

of child <score> elements. Each <score> element has three attributes: username, score,

and rank. For this example, you can assume that the score data will be sorted and

limited to the top 20 or so scores.

Updating the Scores Screen Layout
The scores screen user interface is defined in the scores.xml layout file. To update

this layout to your intended layout design, you follow these steps:

The Eclipse layout resource editor does not display TabHost controls properly in
design mode. To design this kind of layout, you should stick to the XML layout
mode. You must use the Android emulator or an Android device to view the tabs.

1. Remove all the old controls, as you have done for other layouts in this book.

2. Add a new LinearLayout control, setting its android:background attribute to

@drawable/bkgrnd. All subsequent controls will be added inside this

LinearLayout control.

3. Add the same header you created in other layouts. It should contain of a

RelativeLayout control with two ImageView controls and a TextView con-

trol. Set the TextView control’s text attribute to the string resource

@string/scores to reflect the appropriate screen title.

ptg

Watch
Out!

Implementing the Scores Screen Layout 153

4. Outside the RelativeLayout control but still within the LinearLayout, add a

TabHost control called TabHost1. Set its layout_width and layout_height

attributes to fill_parent.

5. Inside the TabHost control, add another LinearLayout control, with its

orientation attribute set to vertical. Set its layout_width and

layout_height attributes to fill_parent.

6. Inside the inner LinearLayout control, add a TabWidget control. Set the con-

trol’s id attribute to @android:id/tabs.

7. Within the inner LinearLayout control at the same level as the TabWidget

control, add a FrameLayout control. Set the FrameLayout control’s id attribute

to @android:id/tabcontent and its layout_width and layout_height

attributes to fill_parent.

8. Define the content of your tabs. Within the FrameLayout control, add two

TableLayout controls, one for each tab. You will use these TableLayout con-

trols to display the scores. Name the first TableLayout control

TableLayout_AllScores and the second TableLayout_FriendScores. Set the

layout_width and layout_height attributes to fill_parent. Set the

stretchColumns attribute to * to allow columns to resize based on the content.

When creating a tabbed view in this way, you must name the identifier as listed
above: @android:id/tabcontent; otherwise, exceptions will be thrown at run-
time. This references a special Android package resource. It is not the same as
using @+id/tabcontent. That would create a new identifier for a layout object in
your own application package.

You can make many controls scrollable by wrapping them within a ScrollView

control. For example, to give a TableLayout control a vertical scrollbar, wrap it in a

ScrollView control and set the scrollbars attribute to vertical. You also need to

set its layout_width and layout_height attributes.

The TabHost section of the scores screen layout file (with optional scrolling

TableLayout tabs) should look something like this:

<TabHost
android:id=”@+id/TabHost1”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<LinearLayout

android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<TabWidget

android:id=”@android:id/tabs”

ptg

Watch
Out!

154 HOUR 9: Developing the Help and Scores Screens

android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<FrameLayout
android:id=”@android:id/tabcontent”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<ScrollView

android:id=”@+id/ScrollViewAllScores”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:scrollbars=”vertical”>
<TableLayout

android:id=”@+id/TableLayout_AllScores”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:stretchColumns=”*”>

</TableLayout>
</ScrollView>
<ScrollView

android:id=”@+id/ScrollViewFriendScores”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:scrollbars=”vertical”>
<TableLayout

android:id=”@+id/TableLayout_FriendScores”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:stretchColumns=”*”></TableLayout>

</ScrollView>
</FrameLayout>

</LinearLayout>
</TabHost>

At this point, save the scores.xml layout file.

At this point, if you switch to the Layout view, Eclipse may display a
“NullPointerException: null” error. The Layout designer doesn’t support TabHost
controls as of Android 2.1. The layout will draw just fine in the emulator and on
devices.

Designing a Screen with Tabs
Now you need to switch your focus to the QuizScoresActivity.java file and wire

up the controls needed by the TabHost control. First, you need to initialize the

TabHost control and then you need to fill it with two tabs, making the default tab

the All Scores tab. Finally, you use mock score data to populate the TableLayout

control in each tab.

ptg

Watch
Out!

Designing a Screen with Tabs 155

Configuring the TabHost Control
The TabHost control must be initialized before it will function properly. Therefore,

you first retrieve it by using the findViewById() method. Next, you must call the

TabHost control’s setup() method, which initializes the TabHost and “glues” the

specially named TabWidget and FrameLayout controls together to form a tab set, as

follows:

TabHost host = (TabHost) findViewById(R.id.TabHost1);
host.setup();

Adding Tabs to the TabHost Control
Now that you have retrieved your TabHost control and initialized it, you need to

configure each tab using the addTab() method. This method takes a TabSpec

parameter, which describes the tab contents. For example, the following code creates

the All Scores tab:

TabSpec allScoresTab = host.newTabSpec(“allTab”);
allScoresTab.setIndicator(getResources().getString(R.string.all_scores),

getResources().getDrawable(android.R.drawable.star_on));
allScoresTab.setContent(R.id.ScrollViewAllScores);
host.addTab(allScoresTab);

The TabSpec control called allScoresTab has the tag reference “allTab”. The actu-

al tab label contains a TextView control and an icon (a star). Finally, you set the

contents of the tab to ScrollViewAllScores, which wraps the TableLayout control

called TableLayout_AllScores, defined in the scores.xml layout resource. Next,

you add a second tab called friendsTab to the TabHost control. The second tab is

implemented much like the first, only with different content (friend scores only, not

all scores).

Setting the Default Tab
At this point, you need to identify which tab to show by default. To do this, you call

the setCurrentTabByTag() method and pass in the tag name of the tab:

host.setCurrentTabByTag(“allTab”);

Save the QuizScoresActivity.java file and run the application in the Android

emulator. If you navigate to the scores screen, you see the two tabs, but you still

have no score data to display.

If you have a screen that only displays a TabHost control, consider using the
TabActivity class to simplify management of the TabHost control.

ptg

156 HOUR 9: Developing the Help and Scores Screens

Working with XML
The Android platform has a number of mechanisms for working with XML data,

including support for the following:

. SAX (Simple API for XML)

. XML Pull Parser

. Limited DOM Level 2 core support

The XML technology you use depends on your specific project. For this example, you

simply want to read through a simple XML file and extract the mock score data.

Retrieving XML Resources
First, you need to access the mock XML data you saved in the project resources.

Specifically, you want to parse the /res/xml/allscores.xml file.

You can initialize an instance of an XmlResourceParser by using the getXML()

method, as follows:

XmlResourceParser mockAllScores = getResources().getXml(R.xml.allscores);

Parsing XML Files with XmlResourceParser
The mock score files have a very simple schema with only two tags: <scores> and

<score>. You want to find each <score> tag and extract its username, rank, and

score attributes. Because you can assume a small amount of data, you can imple-

ment your parsing routing by using a simple while() loop to iterate through the

events by using the next() method, as follows:

int eventType = -1;
boolean bFoundScores = false;
// Find Score records from XML
while (eventType != XmlResourceParser.END_DOCUMENT) {

if (eventType == XmlResourceParser.START_TAG) {
// Get the name of the tag (eg scores or score)
String strName = scores.getName();
if (strName.equals(“score”)) {

bFoundScores = true;
String scoreValue = scores.getAttributeValue(null, “score”);
String scoreRank = scores.getAttributeValue(null, “rank”);
String scoreUserName =

scores.getAttributeValue(null, “username”);
insertScoreRow(scoreTable, scoreValue, scoreRank,

scoreUserName);
}

ptg

Working with XML 157

}
eventType = scores.next();

}

Within the loop, you watch for the START_TAG event. When the tag name matches

the <score> tag, you know you have a piece of score data. You then extract the

data by using the getAttributeValue() method. For each score you find, you add

a new TableRow control to the appropriate TableLayout control (in the appropriate

tab).

Applying Finishing Touches to the Scores Screen
After you have written the code to parse the two mock XML files and populate the

two TableLayout controls in the TabHost control, you need only make a few minor

additions to QuizScoresActivity. You should add a header TableRow to each

TableLayout control, with nicely styled column headers, as well as handling for the

case where no score data is available.

When you’re done applying these finishing touches, you save the class and run the

application in the emulator or on the device. When you navigate to the scores

screen, you see that both tabs are populated with data (see Figure 9.6).

FIGURE 9.6
The Been There,
Done That!
scores screen.

ptg

158 HOUR 9: Developing the Help and Scores Screens

Summary
In this hour, you added two new screens to the Been There, Done That! trivia appli-

cation. As you implemented the help screen, you learned how to display large

amounts of data by using a scrolling TextView control. You also learned how to

access a file resource and change layout characteristics programmatically. With the

scores screen, you learned about the TabHost control as well as how to parse XML to

display some mock score data.

Q&A
Q. Why do I need to name certain controls within the TabHost control with spe-

cific Android id attributes?

A. Occasionally, you will find situations in which you need to name layout con-

trols with specific names in order for the controls to work properly. The more

complex a control, the more likely it requires a bit of “glue” (or “magic”) for

the Android system to load the right templates and resources to display the

control in a familiar way. Usually, these kinds of naming requirements are

documented in the Android SDK.

Q. There is a bit of a delay when loading the scores screen. Why?

A. There are a number of reasons this screen appears less responsive than other

screens. First, you are parsing XML, which can be a costly operation. Second,

you create a large number of View controls to display the score data. You must

always be careful to offload intense processing from the main UI thread to

make the application more responsive and avoid unnecessary shutdown by

the Android system. You could easily add a worker thread to handle the XML,

and you might also consider other, more efficient, controls for displaying the

score data. Finally, with Eclipse, when the debugger is attached, performance

of an application greatly degrades.

ptg

159Workshop

Workshop

Quiz
1. True or False: A TextView control can display a large amount of text.

2. What class can be used to simplify tab screens?

A. Tabify

B. TabActivity

C. TabController

3. True or False: XML files are handled by the XML Resource Manager, so no

parsing is necessary.

4. What type of control can be used to enable scrolling?

A. ScrollLayout

B. Scroller

C. ScrollView

Answers
1. True. The TextView control can display large quantities of text, with optional

horizontal and vertical scrollbars.

2. B. A screen that requires only a tab set can use the TabActivity class to han-

dle tabbing setup and tasks efficiently.

3. False. XML files can be included but still need to be parsed. Three parsers are

available, with the default resource parser being XML Pull Parser.

4. C. The ScrollView control can be used to wrap child View controls within a

scrolling area.

ptg

160 HOUR 9: Developing the Help and Scores Screens

Exercises
1. Launch the application and click each of the links in the help screen text.

Note how easy it can be to integrate Android applications into the Android

platform. Try launching some other kinds of intents and seeing what

happens. For a good list of intents, check out the Intents Registry at

http://www.openintents.org/en/intentstable.

2. Add a third tab to the scores screen to display the user’s current score. Make

the content of this new tab different from the other two tabs by including a

TextView control instead of a TableLayout control. The user’s current score

will be be stored as an application preference.

http://www.openintents.org/en/intentstable

ptg

HOUR 10

Building Forms to Collect
User Input

What You’ll Learn in This Hour:
. Designing and implementing the settings screen

. Working with EditText controls

. Working with Button controls

. Working with Spinner controls

. Saving form data with SharedPreferences

In this hour, you begin to implement the settings screen of the Been There, Done That!

application. The settings screen displays a form for entering application configuration

information, including the user’s login and profile settings. Different settings necessitate

the use of different input controls, including EditText, Spinner, and Button controls.

Finally, you need to ensure that each setting is saved and stored in a persistent manner as

part of the application’s preferences.

Designing the Settings Screen
The settings screen must allow the user to configure a number of game settings and save

them. Game settings may be text input fields, drop-down lists, or other, more complex,

controls. (You eventually want to handle social gaming with friends, but you will deal

with that requirement later.) For now, you begin by implementing a simple settings screen

with five basic game settings:

. Nickname—The name to be displayed on score listings. This text field should be

no more than 20 characters long—an arbitrary but reasonable length for your

purposes.

ptg

162 HOUR 10: Building Forms to Collect User Input

. Email—The unique identifier for each user. This is a text field.

. Password—A mechanism to handle user verification. This is a password text

field. When setting the password, the user should input the password twice for

verification. The password text may be stored as plaintext.

. Date of Birth—To verify minimum age, when necessary. This is a date field

but often displayed in a friendly way users understand and can easily interact

with.

. Gender—A piece of demographic information, which could be used for special

score listings or to target ads to the user. This can be set to three different set-

tings: Male (1), Female (2), or Prefer Not to Say (0).

Figure 10.1 shows a rough design for the settings screen.

FIGURE 10.1
Rough design
for the Been
There, Done
That! settings
screen.

Screen Title

NICKNAME:

EMAIL:

PASSWORD:

BIRTH DATE:

GENDER:

(20 characters max)

(Will be used as unique account id)

(Password requires entering twice to verify)

(DOB requires entering Month, Day, Year)

(Male, Female, or Prefer Not To Say)

ptg

Designing the Settings Screen 163

The application settings screen will contain quite a few different controls, so you

need to be careful with screen real estate. You begin here, as you have on other

screens, with the customary title bar.

Below the title, you add a region for each setting. Because you may add new settings

in the future, you should encapsulate the settings area of the screen within a

ScrollView control. This way, if all the settings fields do not fit on a screen, the user

can scroll. The ScrollView control can have only a single child control, so you can

encapsulate the bulk of your settings in another vertical LinearLayout control.

Each setting requires two “rows” in the LinearLayout control: a TextView row that

displays the setting name label and a row for the input control to capture its value.

For example, the Nickname setting would require a row with a TextView control to

display the label string (“Nickname:”) and a row for an EditText control to allow

the user to input a string of text.

Now you need to determine which control is most appropriate for each setting:

. The Nickname and Email fields are simply different types of single-line text

input, so they can be EditText controls.

. The Password setting requires two EditText controls. However, the Password

text need not be displayed on the settings screen directly. Instead, you create a

Button control to launch a Dialog window to allow the user to change the

password (using the two EditText controls). The main settings screen can just

display whether a password has been set in a TextView control.

. The Date of Birth setting requires a DatePicker control. Because the

DatePicker control is actually three separate controls—a month picker, a day

picker, and a year picker—it takes up a lot of space on the screen. Therefore,

instead of including it directly on the screen, you can add a Button control to

launch a DatePickerDialog control. The user selects the appropriate date

and closes the dialog, and the resulting date is displayed (but not editable) on

the main settings screen within a TextView control.

. The Gender setting is simply a choice between three values, so a Spinner

(drop-down) control is most appropriate.

Figure 10.2 shows the layout design of the basic settings screen.

ptg

164 HOUR 10: Building Forms to Collect User Input

RelativeLayout

ImageViewImageView TextView (Title)

LinearLayout (Vertical Orientation)

LinearLayout (Horizontal)

LinearLayout (Horizontal)

LinearLayout

ScrollView (Vertical)

TextView (“Password:”)

TextView (“Birth Date:”)

TextView (“Nickname:”)

TextView (“Gender:”)

Spinner (Gender Input List)

TextView (“Email:”)

EditText (Nickname Input)

EditText (Email Input)

Button

Button TextView

TextView

(Launch Password
Dialog)

(Launch Date Dialog)

(Show Password Set/
Unset String)

(Show Date String)

FIGURE 10.2
Layout design
for the Been
There, Done
That! settings
screen.

ptg

Implementing the Settings Screen Layout 165

Implementing the Settings Screen
Layout
To implement the settings screen, you begin by adding new resources to the project.

You then update the settings.xml layout resource to reflect the settings screen

design.

Adding New Project Resources
Screens with form fields seem to rely on more resources than most other screen

types. You need to add a number of new resources to support the settings screen. In

addition to the string, dimension, and color resources, you also need to add a new

type of resource: a string array.

Adding New String Resources
The settings screen relies on numerous new string resources. You add the following

text resources to the strings.xml resource file:

. Text for each setting’s TextView label (for example, “Nickname:”)

. Text for each Button control (for example, “Set Password”)

. Text to display in a TextView control when the password is set or not set

. Text to display in a TextView control when the Date of Birth field is not set

. Text to display in a TextView control when the two Password fields match or

don’t match

. Text for each Gender option in the Spinner control (for example, “Male”)

After you have added these strings, save the strings.xml resource file.

Adding New String Array Resources
Spinner controls, like ListView controls, use data adapters. You have your gender

string resources defined, but you still need to group them into some sort of dataset.

The simplest dataset is an array (and the corresponding ArrayAdapter control). To

group the gender string resources (“Male”, “Female”, “Prefer Not To Say”)

together into an array, you create a new resource type called a String array.

To create a String array resource, you must add a new resource file called

/res/values/arrays.xml. Within this file, you create a new string-array element

called genders. Within this string-array element, you add three Item elements,

one for each string resource.

ptg

166 HOUR 10: Building Forms to Collect User Input

Assume that you added to the strings.xml resource file the following three gender

resource strings defined earlier:

<string
name=”gender_male”>Male</string>

<string
name=”gender_female”>Female</string>

<string
name=”gender_neutral”>Prefer Not To Say</string>

Within the arrays.xml resource file, you set each item in the genders string array

to the appropriate string resource. For example, the first Item element in the array

(with an index of 0) would have the value @string/gender_neutral. The resulting

arrays.xml resource file follows:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<string-array
name=”genders”>
<item>@string/gender_neutral</item>
<item>@string/gender_male</item>
<item>@string/gender_female</item>

</string-array>
</resources>

Save the arrays.xml resource file. Now when you want to load the genders string

array resource into memory, you can access it programmatically by using the

R.array.genders resource identifier.

Updating the Settings Screen Layout
The settings.xml layout file dictates the user interface of the settings screen.

Again, you open the Eclipse layout resource editor and remove all existing controls

from the layout. You then follow these steps to generate the layout you want, based

on your earlier design:

1. Add the customary LinearLayout control, with its background attribute set to

@drawable/bkgrnd. All subsequent controls will be added inside the

LinearLayout control.

2. Add the same title bar controls you’ve added to other screens.

3. Below the title bar, add a ScrollView control to encapsulate your settings. Set

its isScrollContainer attribute to true and its scrollbars attribute to ver-

tical. Set its layout_width and layout_height attributes to fill_parent.

4. Within the ScrollView control, add a LinearLayout control to encapsulate

your settings. Set its orientation attribute to vertical. Set its layout_width

ptg

Using Common Form Controls 167

and layout_height attributes to fill_parent. All subsequent controls will be

added within this LinearLayout control.

5. Within the LinearLayout control, add a TextView control to display the

Nickname label text. Below the TextView control for the label, add an

EditText control. Set its id attribute to EditText_Nickname, its maxLength

attribute to 20, its maxLines attribute to 1, and its inputType attribute to

textPersonName.

6. Add a TextView control to display the Email label text. Then add another

EditText control below it, setting its id attribute to EditText_Email, its

maxLines attribute to 1, and its inputType attribute to textEmailAddress.

7. Add the Password settings region of the form by adding another TextView

control to display the Password label text. Below it, add a horizontal

LinearLayout control with two controls: a Button control and a TextView

control. Configure the Button control with the id attribute Button_Password

and the text attribute set to the Password button text string resource.

Configure the TextView control to display the Password setting state string

(“Password not set”, for now).

8. At the same level as the Password setting region, add a region for the Date of

Birth setting. Start by adding another TextView control to display the Date of

Birth label text. Next, add another horizontal LinearLayout control with two

controls: a Button control and a TextView control. Configure the Button con-

trol with the id attribute Button_DOB and the text attribute set to the Date of

Birth button text string resource. Configure the TextView control to display

the Date of Birth setting state string (“Date not set”, for now).

9. Add one last settings region for the Gender drop-down by adding a TextView

control to display the Gender label text. Then add a Spinner control and set

its id attribute to Spinner_Gender.

10. Before saving, adjust any text sizes, fonts, colors, height, or width settings

until the screen draws as desired.

At this point, save the settings.xml layout file.

Using Common Form Controls
Now that the settings.xml layout file is complete, you need to update the

QuizSettingsActivity class to populate the controls and allow editing and saving

of form data. This section shows you how to save and restore data to the form.

ptg

168 HOUR 10: Building Forms to Collect User Input

Working with EditText Controls
The EditText control, which is derived from the TextView control, is used to collect

textual input from the user. Figure 10.3 shows a simple EditText control.

FIGURE 10.3
An EditText
control for text
input.

Configuring EditText Controls
All the typical attributes of a TextView control (for example, textColor, textSize)

are available to EditText controls. The following are some EditText attributes that

are commonly used for the settings screen:

. inputType—Instructs the Android system about how to help the user fill in

the text. For example, you set the inputType attribute of the EditText control

for the Email field to textEmailAddress, which instructs the Android system

to use the email-oriented soft keyboard (with the @ sign). The inputType

value called textPassword automatically masks the user’s password as it is

typed.

. minLines and maxLines—Restrict the number of lines of text allowed in the

control.

. maxLength—Restricts the number of characters of text allowed in the control.

For example, you can limit the number of characters allowed in the Nickname

setting by setting the maxLength attribute of the Nickname setting’s EditText

control to 20.

Handling Text Input
As with a TextView control, you can access the text stored in an EditText control

by using the getText() and setText() methods. For example, to extract the string

typed into the EditText control called EditText_Nickname, you use the getText()

method as follows:

EditText nicknameText = (EditText) findViewById(R.id.EditText_Nickname);
String strNicknameToSave = nicknameText.getText().toString();

The getText() method returns an Editable object, but in this case, you simply

want its String value equivalent.

ptg

Using Common Form Controls 169

Committing EditText Input
To handle EditText input to a form, you need to determine when new text has

been entered. To do this, you can listen for EditText key events and commit the

text entered when certain keys are pressed. For example, to listen for the Enter key

during input of the Nickname setting, you would register View.OnKeyListener by

using the setOnKeyListener() method of the EditText control, as follows:

final EditText nicknameText =
(EditText) findViewById(R.id.EditText_Nickname);

nicknameText.setOnKeyListener(new View.OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {

if ((event.getAction() == KeyEvent.ACTION_DOWN) &&
(keyCode == KeyEvent.KEYCODE_ENTER)) {
String strNicknameToSave = nicknameText.getText().toString();
// TODO: Save Nickname setting (strNicknameToSave)
return true;

}
return false;

}
});

Listening for EditText Keystrokes
Eventually, you will design a Password dialog. Say that you want to match the text

strings within two EditText password fields, called EditText_Pwd1 and

EditText_Pwd2, while the user is typing. A third TextView control, called

TextView_PwdProblem, provides feedback about whether the passwords match.

First, you need to retrieve each of the controls:

final EditText p1 = (EditText) findViewById(R.id.EditText_Pwd1);
final EditText p2 = (EditText) findViewById(R.id.EditText_Pwd2);
final TextView error = (TextView) findViewById(R.id.TextView_PwdProblem);

Next, you add TextWatcher to the second EditText control, using the

addTextChangedListener() method, like this:

p2.addTextChangedListener(new TextWatcher() {
@Override

public void afterTextChanged(Editable s) {
String strPass1 = p1.getText().toString();
String strPass2 = p2.getText().toString();
if (strPass1.equals(strPass2)) {

error.setText(R.string.settings_pwd_equal);
} else {

error.setText(R.string.settings_pwd_not_equal);
}

}

// Other required overrides do nothing
});

ptg

Did you
Know?

170 HOUR 10: Building Forms to Collect User Input

The user can type the password into the EditText_Pwd1 EditText control normally.

However, each time the user types a character into the EditText_Pwd2 control, you

compare the text in both EditText controls and set the text of the TextView control

called TextView_PwdProblem to reflect whether the text matches (see Figure 10.4).

FIGURE 10.4
A Password dia-
log with two
EditText con-
trols and a
TextView
control.

Working with Button Controls
The Button control on the Android platform is relatively straightforward, as form

controls go. Generally speaking, a Button control is simply a clickable area with a

text string label. Figure 10.5 shows a Button control.

FIGURE 10.5
A Button
control.

Configuring Button Controls
Many of the typical attributes of TextView controls, such as textColor and

textSize, are available for the Button text label. You need two simple Button con-

trols for the settings screen: one for launching the Password Dialog window and one

for launching the DatePickerDialog. You configure these Button controls by giving

each a unique identifier and setting the text attribute labels of each. You also set

each Button control’s layout_width and layout_height attributes to wrap_con-

tent so that each button scales appropriately, based on the text label.

The Android platform actually supports two kinds of Button controls: the basic
Button control and the ImageButton control. An ImageButton control behaves
much like a regular Button control, only instead of displaying a text label, it dis-
plays a Drawable image resource.

You can use attributes to modify the look of a Button control. For example, you can

change the shape of the button (by default, a white rectangle with rounded corners)

by setting the background, drawableTop, drawableBottom, drawableLeft, and

drawableRight attributes of the Button to a Drawable resources.

ptg

Did you
Know?

▼

Using Common Form Controls 171

Try It Yourself
Try changing the look of the Button control called Button_DOB by taking the follow-

ing steps in the settings.xml layout file:

1. Change the background property of the Button control to the Drawable

graphic resource called @drawable/textured.

2. Change the drawableTop property of the Button control to the Drawable

graphic resource called @drawable/divider.

3. Change the drawableBottom property of the Button control to the Drawable

graphic resource called @drawable/divider. Note that the Button control is

now an ugly orange menace on the screen. You’ve created a monster.

4. Change the Button control back to the default Button control look and feel

by removing the background, drawableTop, and drawableBottom properties

from Button_DOB.

Handling Button Clicks
Handling the click event of a Button control is achieved by using the

setOnClickListener() method. Specifically, you need to implement the onClick()

method of View.OnClickListener. This is where any event handling for clicks

should take place.

For example, to handle when a user clicks the Button control called Button_DOB,

you add the following code to the onCreate() method of the

QuizSettingsActivity class to handle the event:

Button pickDate = (Button) findViewById(R.id.Button_DOB);
pickDate.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
// Handle date picking dialog

}
});

You retrieve the Button control by using the findViewById() method, and then you

set View.OnClickListener for the control by using the setOnClickListener()

method. It is within the onClick() method that you want to trigger

DatePickerDialog to be launched. However, you are not quite ready to implement

this Dialog window yet. Instead, you can drop in a useful little helper pop-up mes-

sage called a toast.

A toast is a view that pops up in the foreground to display a message for a few
seconds and then disappears.

▲

ptg

172 HOUR 10: Building Forms to Collect User Input

For example, you could add a Toast message to the onClick() method of the

Button_DOB, like this:

Toast.makeText(QuizSettingsActivity.this,
“TODO: Launch DatePickerDialog”,
Toast.LENGTH_LONG).show();

Figure 10.6 shows the resulting Toast message.

FIGURE 10.6
A Toast mes-
sage triggered
by a button
click.

Working with Spinner Controls
The Spinner control is basically the Android platform’s version of a drop-down list.

The control looks much like a drop-down when closed (see Figure 10.7, left), but

when the Spinner control is activated, it displays a chooser window (see Figure

10.7, right) instead of drawing the drop-down on the main screen.

FIGURE 10.7
A Spinner con-
trol closed (left)
and open
(right).

ptg

Using Common Form Controls 173

Configuring Spinner Controls
Most of the configuration for a Spinner control must be handled programmatically.

As with a ListView control, a Spinner control uses a data adapter to map its con-

tents from a dataset to each view displayed in the control. To load a Spinner control

with data, you follow these steps:

1. Retrieve the Spinner control from the layout.

2. Configure a data adapter to map the data to the control.

3. Call the setAdapter() method of the Spinner control.

To load the Spinner control from the layout, you use the familiar findViewById()

method:

final Spinner spinner = (Spinner) findViewById(R.id.Spinner_Gender);

Next, you configure your data adapter. A Spinner control displays its data different-

ly when it’s closed than when it’s open. Therefore, you need to provide layout tem-

plates for both display states. Fortunately, the Android platform includes several spe-

cial layout resources to help create Spinner controls that contain text. Specifically,

you can use the layout resource named android.R.layout.simple_spinner_item

to create the appropriate view for each item in a default Spinner control. You can

use the android.R.layout.simple_spinner_dropdown_item layout resource as the

drop-down view resource template.

Using these handy built-in layout templates, you can load your String Array

resource called genders into an ArrayAdapter control by using the

createFromResource() method:

ArrayAdapter<?> adapter = ArrayAdapter.createFromResource(this,
R.array.genders, android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

Finally, you call the setAdapter() method of the Spinner control to bind the data

to the control:

spinner.setAdapter(adapter);

Handling Spinner Selections
After the Spinner control has been filled with data, you can control which item is

selected by using the setSelection() method. For example, you know that the

option for female gender is stored in the string array at index 2 (because you use a

ptg

By the
Way

174 HOUR 10: Building Forms to Collect User Input

0-based string array). Because you conveniently decide to map the indexes directly

to the gender values, you can set the Spinner control to the Female option by using

the setSelection() method, as follows:

spinner.setSelection(2);

The Spinner class also includes a number of methods for retrieving the current item

selected.

Listening for Selection Events
You want to save the Spinner control option chosen as soon as the user selects one.

To do this, you use the setOnItemSelectedListener() method of the Spinner con-

trol to listen for selection events. Specifically, you need to implement the

onItemSelected() method of AdapterView.OnItemSelectedListener, like this:

spinner.setOnItemSelectedListener(
new AdapterView.OnItemSelectedListener() {

@Override

public void onItemSelected(AdapterView<?> parent, View itemSelected,
int selectedItemPosition, long selectedId) {
// TODO: Save item index (selectedItemPosition) as Gender setting

}

// … Other required overrides
});

With certain versions of the Android SDK, you might also need to provide the
appropriate stub implementations for other required methods of the
AdapterView.OnItemSelectedListener class.

At this point, save the QuizSettingsActivity.java file and run the Been There,

Done That! application in the Android emulator. After the splash screen finishes,

choose the settings screen option. The screen should look as shown in Figure 10.8.

ptg

Saving Form Data with SharedPreferences 175

Saving Form Data with
SharedPreferences
You can use the persistent storage mechanism called SharedPreferences to store

the application game settings. Using these preferences, you can save all the form

values on the settings screen.

Defining SharedPreferences Entries
Earlier you added a string to the QuizActivity base class for your game prefer-

ences:

public static final String GAME_PREFERENCES = “GamePrefs”;

Now you need to add a preference String name for each of the values you want to

store to the QuizActivity class:

public static final String GAME_PREFERENCES_NICKNAME = “Nickname”; // String
public static final String GAME_PREFERENCES_EMAIL = “Email”; // String
public static final String GAME_PREFERENCES_PASSWORD = “Password”; // String
public static final String GAME_PREFERENCES_DOB = “DOB”; // Long
public static final String GAME_PREFERENCES_GENDER = “Gender”; // Int

FIGURE 10.8
The Been There,
Done That! set-
tings screen.

ptg

176 HOUR 10: Building Forms to Collect User Input

Saving Settings to SharedPreferences
Now that you have defined the preference settings, you can save any committed

form field to the game preferences. Within the QuizSettingsActivity class, you

begin by defining a SharedPreferences member variable:

SharedPreferences mGameSettings;

Within the onCreate() method of the activity, you initialize this member variable

as follows:

mGameSettings =
getSharedPreferences(GAME_PREFERENCES, Context.MODE_PRIVATE);

You pass in the name of your SharedPreferences (the String called GAME_PREF-

ERENCES you created in the QuizActivity class). The mode called MODE_PRIVATE is

the default permission used for private application files.

Now anyplace you need to save a preference, you simply open

SharedPreferences.Editor, assign a specific preference setting, and commit the

change. For example, to save the Nickname EditText information, you retrieve the

text by using the EditText control’s getText() method:

final EditText nicknameText =
(EditText) findViewById(R.id.EditText_Nickname);

String strNickname = nicknameText.getText().toString();

After you have extracted the String value from the EditText input field, you can

save it to SharedPreferences.Editor, using the putString() method:

Editor editor = mGameSettings.edit();
editor.putString(GAME_PREFERENCES_NICKNAME, strNickname);
editor.commit();

The Nickname, Email, and Password settings can be saved as String values, but the

Date of Birth and Gender settings are of long and integer types, respectively. To

save these settings, you must extract the value from the appropriate control, convert

it if necessary, and save it using the SharedPreferences.Editor methods

putLong() and putInt().

For now, you can commit the input from the Nickname, Email, and Gender fields.

You will work further with the Date of Birth and Password fields in the next hour,

when you implement the DatePickerDialog and Password Dialog window. If you

go back through the QuizSettingsActivity class and look for the places where

you have TODO comments, you can see exactly where you need to commit the data.

ptg

Did you
Know?

Saving Form Data with SharedPreferences 177

Reading Settings from SharedPreferences
When you begin saving settings in a persistent fashion, you are going to need to be

able to read them back out and load them into the form (for editing). To do this,

you need to access the game preferences and check whether specific settings exist.

For example, you might want to check and see if the Nickname setting is set, and if

so, load its value into the EditText input field called EditText_Nickname. You can

do this by using the contains() and getString() methods of SharedPreferences:

final EditText nicknameText =
(EditText) findViewById(R.id.EditText_Nickname);

if (mGameSettings.contains(GAME_PREFERENCES_NICKNAME)) {
nicknameText.setText(mGameSettings.getString(

GAME_PREFERENCES_NICKNAME, “”));
}

Here, you check for the existence of a specific setting name defined as GAME_PREFER-

ENCES_NICKNAME in SharedPreferences by using the contains() method. If the

contains() method returns true, you extract the value of that setting (a String

setting) from SharedPreferences by using the getString() method.

The Nickname, Email, and Password settings are strings and can be extracted using

the getString() method. However, the Date of Birth setting must be extracted

using the getLong() method, and the Gender setting requires the getInt() method.

Application preferences are stored on the Android file system as XML files.
Preferences files can be accessed using the File Explorer of the Eclipse DDMS
perspective. SharedPreferences files are found in the following directory:

/data/data/<package name>/shared_prefs/<preferences filename>.xml

Finally, for testing purposes, you override the onDestroy() method of

QuizSettingsActivity to log all current settings whenever the settings screen is

destroyed:

@Override

protected void onDestroy() {
Log.d(DEBUG_TAG, “SHARED PREFERENCES”);
Log.d(DEBUG_TAG, “Nickname is: “

+ mGameSettings.getString(GAME_PREFERENCES_NICKNAME, “Not set”));
Log.d(DEBUG_TAG, “Email is: “

+ mGameSettings.getString(GAME_PREFERENCES_EMAIL, “Not set”));
Log.d(DEBUG_TAG, “Gender (M=1, F=2, U=0) is: “

+ mGameSettings.getInt(GAME_PREFERENCES_GENDER, 0));
// We are not saving the password yet
Log.d(DEBUG_TAG, “Password is: “

+ mGameSettings.getString(GAME_PREFERENCES_PASSWORD, “Not set”));
// We are not saving the date of birth yet
Log.d(DEBUG_TAG, “DOB is: “

+ DateFormat.format(“MMMM dd, yyyy”, mGameSettings.getLong(

ptg

178 HOUR 10: Building Forms to Collect User Input

GAME_PREFERENCES_DOB, 0)));
super.onDestroy();

}

Now whenever QuizSettingsActivity is destroyed (for example, when a user

presses the Back button), the preferences that have been committed are displayed in

the LogCat console.

Summary
In this hour, you added a form to the settings screen of the Been There, Done That!

trivia application. The form handles various fields, including text input of various

kinds, using EditText controls, and a drop-down list, using a Spinner control. You

also conserved screen space by implementing two Button controls, which can be

wired up in the future to launch Dialog windows. Finally, you implemented a sim-

ple SharedPreferences mechanism to load and save game settings for use in the

application.

Q&A
Q. Why not use the typical Save and Cancel buttons that you’d see on a web

form?

A. Mobile input forms may certainly be designed using this traditional approach,

but consider the overhead in terms of state management. (Activity life cycle

events, such as suspend and resume, would need to save and restore pending

input.) A common approach for mobile input forms is to commit form fields

as they are completed.

Q. Does a Spinner control have to be populated from an array?

A. No, the underlying data of a Spinner control can be populated from numerous

data sources using a data adapter. For example, the contents of a Spinner con-

trol might instead come from a database.

ptg

179Workshop

Workshop

Quiz
1. True or False: EditText controls are derived from TextView controls.

2. What types of button controls are available on the Android platform?

A. Button

B. TextButton

C. ImageButton

3. True or False: You can store Calendar data in SharedPreferences.

Answers
1. True. The TextView class, with its familiar attributes and methods, such as

getText() and setText(), is the base class of the EditText class.

2. A and C. There are two button controls in Android: Button is a simple button

with a text label. ImageButton is a button with a Drawable graphic label.

3. False. The only types supported by SharedPreferences are Boolean, float,

int, long, and String. To save dates or times, consider storing them as long

values (milliseconds from epoch).

Exercises
1. Add a Toast to the Password Dialog Button click handler. Make it display the

message “Clicked!” when the Button is clicked.

2. Modify each EditText control to save its contents when the user presses the

up key (KEYCODE_DPAD_UP) or down key (KEYCODE_DPAD_DOWN) on the direc-

tional keypad in addition to the Enter key (KEYCODE_ENTER).

3. Implement a Clear button that deletes all game preferences, using the

clear() method of SharedPreferences.Editor. Don’t forget to call the

commit() method.

ptg

This page intentionally left blank

ptg

HOUR 11

Using Dialogs to Collect User
Input

What You’ll Learn in This Hour:
. Working with activity dialogs

. Using DatePickerDialog

. Handling and formatting date information

. Building custom dialogs

In this hour, you complete the Been There, Done That! settings screen by adding several

Dialog windows to QuizSettingsActivity. Each Dialog window is specially designed

to collect a specific type of input from the user. First, you add a Dialog window called

DatePickerDialog to collect date input, allowing the user to supply his or her date of

birth, and then you build a custom Dialog window to facilitate changing the user’s

password.

Working with Activity Dialogs
An activity can use Dialog windows to organize information and react to user-driven

events. For example, an activity might display a dialog informing the user of an error or

asking to confirm an action such as deleting a piece of information. Using the Dialog

mechanism for simple tasks helps keep the number of Activity classes in an application

manageable.

ptg

182 HOUR 11: Using Dialogs to Collect User Input

Exploring the Different Types of Dialog Windows
There are a number of different Dialog window types available in the Android SDK,

including the following:

. Dialog—The basic class for all Dialog types (see Figure 11.1a).

. AlertDialog—A dialog with one, two, or three Button controls (see Figure

11.1b).

. CharacterPickerDialog—A dialog for choosing an accented character associ-

ated with a base character (see Figure 11.1c).

. DatePickerDialog—A dialog with a DatePicker control (see Figure 11.1d).

. ProgressDialog—A dialog with a determinate or indeterminate ProgressBar

control (see Figure 11.1e).

. TimePickerDialog—A dialog with a TimePicker control (see Figure 11.1f).

FIGURE 11.1
The different
Dialog window
types available
in Android.

If none of the existing Dialog window types is adequate, you can create custom

Dialog windows that meet your specific layout requirements. We will discuss custom

Dialog windows later in this hour.

Tracing the Life Cycle of an Activity Dialog
Each Dialog window must be defined within the activity in which it will be used. A

Dialog window may be launched once or used repeatedly. Understanding how an

A B C

D E F

ptg

Working with Activity Dialogs 183

activity manages the Dialog window life cycle is important to implementing a

Dialog window correctly. Let’s look at the key methods that an activity must use to

manage a Dialog window:

. The showDialog() method is used to display a Dialog window.

. The dismissDialog() method is used to stop showing a Dialog window. The

Dialog window is kept around in the activity’s Dialog window pool. If the

Dialog window is shown again, using showDialog(), the cached version is

displayed once more.

. The removeDialog() method is used to remove a Dialog window from the

Activity object’s Dialog window pool. The Dialog window will no longer be

kept around for future use. If you call showDialog() again, the Dialog win-

dow must be re-created.

Defining a Dialog
A dialog used by an activity must be defined in advance. Each dialog has a special

Dialog identifier (an integer). When the showDialog() method is called, you pass

in this Dialog identifier as a parameter. At that point, the onCreateDialog()

method is called and must return a dialog of the appropriate type.

You must override the onCreateDialog() method of an activity and return the

appropriate dialog for a given identifier. If an activity has multiple Dialog windows,

the onCreateDialog() method can use a switch statement to return the appropri-

ate Dialog window, based on the incoming parameter—the Dialog identifier.

Initializing a Dialog
Because a Dialog window may be kept around by an activity, it may be important

to re-initialize a dialog each time it is shown instead of just when it is created the

first time. For this purpose, you can override the onPrepareDialog() method of the

activity.

While the onCreateDialog() method may be called only once for initial dialog cre-

ation, the onPrepareDialog() method is called each time the showDialog()

method is called, giving the activity a chance to initialize the dialog each time it is

shown to the user.

Launching a Dialog
You can display any dialog defined within an activity by calling its showDialog()

method and passing it a valid Dialog identifier—one that will be recognized by the

onCreateDialog() method.

ptg

184 HOUR 11: Using Dialogs to Collect User Input

Dismissing a Dialog
Most Dialog types have automatic dismissal circumstances. However, if you want to

force a dialog to be dismissed, you can simply call the dismissDialog() method

and pass in the Dialog identifier.

Removing a Dialog from Use
Dismissing a Dialog window does not destroy it. If the dialog is shown again, its

cached contents will be redisplayed. If you want to force an activity to remove a dia-

log and not reuse it, you call the removeDialog() method and pass in the valid

Dialog identifier.

Using DatePickerDialog
Now you should add a Dialog window to the QuizSettingsActivity class.

Specifically, you should add DatePickerDialog to handle input of the user’s date of

birth. Adding DatePickerDialog to QuizSettingsActivity involves several steps:

1. Define a unique identifier for the dialog within the activity.

2. Implement the onCreateDialog() method of the activity to return

DatePickerDialog when supplied the unique identifier.

3. Implement the onPrepareDialog() method of the activity to initialize

DatePickerDialog with the date of birth preference or the current date.

4. Launch the DatePickerDialog using the showDialog() method, with the

unique Dialog identifier.

Adding the DatePickerDialog to the
QuizSettingsActivity Class
To create DatePickerDialog, you must first declare a unique identifier to represent

the dialog, as follows:

static final int DATE_DIALOG_ID = 0;

Next, you need to implement the onCreateDialog() method of

QuizSettingsActivity and include a case statement for the new Dialog identifier:

@Override

protected Dialog onCreateDialog(int id) {
switch (id) {
case DATE_DIALOG_ID:

// TODO: Return a DatePickerDialog here

ptg

Did you
Know?

Using DatePickerDialog 185

}
return null;

}

Now let’s look at how to construct a DatePickerDialog in detail. Within the switch

statement for DATE_DIALOG_ID, you must return a valid DatePickerDialog for dis-

play. The constructor for DatePickerDialog includes a

DatePickerDialog.OnDateSetListener parameter, where you can provide an

implementation of the onDateSet() method to handle when the user chooses a spe-

cific date of birth and save it to the SharedPreferences:

DatePickerDialog dateDialog =
new DatePickerDialog(this,

new DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view, int year,

int monthOfYear, int dayOfMonth) {
Time dateOfBirth = new Time();
dateOfBirth.set(dayOfMonth, monthOfYear, year);
long dtDob = dateOfBirth.toMillis(true);
dob.setText(DateFormat

.format(“MMMM dd, yyyy”, dtDob));
Editor editor = mGameSettings.edit();
editor.putLong(GAME_PREFERENCES_DOB, dtDob);
editor.commit();

}
}, 0, 0, 0);

A DatePicker control has three different input controls: month, day, and year.

Therefore, to create DatePickerDialog, you must set these date fields individually.

Because DatePickerDialog can be launched any number of times, you do not ini-

tialize its date within the onCreateDialog() method but instead pass in default val-

ues (three zeros). Finally, you return the new DatePickerDialog you created in the

onCreateDialog() method switch statement:

return dateDialog;

Initializing DatePickerDialog
You want to initialize DatePickerDialog each and every time it is displayed, so you

override the onPrepareDialog() method to set DatePicker to either today’s date or

the birth date saved in the game preferences.

You can use the Calendar class to get the current date on the device. The
Calendar class has fields for each of the “parts” of the date: day, month, and
year. You can use this feature of the Calendar class to configure
DatePickerDialog with a specific date.

ptg

186 HOUR 11: Using Dialogs to Collect User Input

The onPrepareDialog() method passes in both the Dialog identifier and the

instance of the Dialog window, so you can modify it as needed. For example, in this

case, you want to update the date of DatePickerDialog, so you use the

updateDate() method:

@Override

protected void onPrepareDialog(int id, Dialog dialog) {
super.onPrepareDialog(id, dialog);
switch (id) {
case DATE_DIALOG_ID:

// Handle any DatePickerDialog initialization here
DatePickerDialog dateDialog = (DatePickerDialog) dialog;
int iDay, iMonth, iYear;
// Check for date of birth preference
if (mGameSettings.contains(GAME_PREFERENCES_DOB)) {

// Retrieve Birth date setting from preferences
long msBirthDate = mGameSettings.getLong(GAME_PREFERENCES_DOB, 0);
Time dateOfBirth = new Time();
dateOfBirth.set(msBirthDate);
iDay = dateOfBirth.monthDay;
iMonth = dateOfBirth.month;
iYear = dateOfBirth.year;

} else {
Calendar cal = Calendar.getInstance();
// Today’s date fields
iDay = cal.get(Calendar.DAY_OF_MONTH);
iMonth = cal.get(Calendar.MONTH);
iYear = cal.get(Calendar.YEAR);

}
// Set the date in the DatePicker to the date of birth OR to the
// current date
dateDialog.updateDate(iYear, iMonth, iDay);
return;

}
}

Launching DatePickerDialog
You have configured DatePickerDialog, but it doesn’t display unless the user clicks

the appropriate Button control on the main settings screen. The user triggers

DatePickerDialog by pressing the Button control called Button_DOB.

You registered for click events on the Button_DOB control and currently make a

Toast call. Now you can change this to call the showDialog() method, which

launches DatePickerDialog, as shown in Figure 11.2:

Button pickDate = (Button) findViewById(R.id.Button_DOB);
pickDate.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
showDialog(DATE_DIALOG_ID);

}
});

ptg
Did you

Know?

Working with Custom Dialogs 187

You can use the DateFormat class to format a date string. The DateFormat class
works well with Calendar dates as well as long format dates (milliseconds since
epoch). For example, to format a long date in the form January 1, 2010, you
could use the format() method of the DateFormat method as follows:

String strDate = DateFormat.format(“MMMM dd, yyyy”, dtDob);

Working with Custom Dialogs
When the basic Dialog types do not suit your purpose, you can create a custom dia-

log. One easy way to create a custom dialog is to begin with AlertDialog and use

an AlertDialog.Builder class to override its default layout. To create a custom

dialog this way, follow these steps:

1. Design a custom layout resource to display in AlertDialog.

2. Define the custom Dialog identifier in the activity.

3. Update the activity’s onCreateDialog() method to build and return the

appropriate custom AlertDialog.

4. Launch the dialog using the showDialog() method.

FIGURE 11.2
DatePicker-
Dialog used for
date of birth
input.

ptg

188 HOUR 11: Using Dialogs to Collect User Input

Adding a Custom Dialog to the Settings Screen
In the Been There, Done That! application, you want to include a custom dialog to

handle entering and verifying a new password. Figure 11.3 shows the password dia-

log states (matching and not matching passwords).

FIGURE 11.3
A custom dialog
used for han-
dling password
input.

The custom password dialog you want to create requires two text input fields for

entering password data. When the two passwords match, the password will be set.

Figure 11.4 shows a rough design of the settings screen in this case.

ptg

Working with Custom Dialogs 189

The password dialog is simply a subform of the settings screen that has two

EditText input fields. You also need a TextView control below the input fields to

tell the user whether the passwords match.

Figure 11.5 shows the layout design of the password dialog.

FIGURE 11.4
Rough design
for the Been
There, Done
That! password
dialog.

Dialog Title

Ok Cancel

PASSWORD:

PASSWORD (Again):

(Text Hidden as Typed)

(Text Hidden as Typed)

“Passwords Match”

FIGURE 11.5
Layout design
for the Been
There, Done
That! settings
screen.

TextView (“Password:”)

TextView (E.g. “Passwords Match”)

TextView (“Password (Again):”)

EditText (Password #1 Input)

EditText (Password #2 Input)

LinearLayout (Vertical Orientation)

You can take advantage of the built-in Button controls that can be configured for

use with AlertDialog. The three buttons need not be included in your layout

design.

ptg

190 HOUR 11: Using Dialogs to Collect User Input

Implementing the Password Dialog Layout
Now it’s time to implement the new layout that will be used by the password dialog.

You begin by creating a new layout resource file called password_dialog.xml. This

layout file dictates the user interface of the dialog. To create this file, you follow

these steps:

1. Open the Eclipse layout resource editor and add a new file called /res/lay-

out/password_dialog.xml to the project.

2. Add a LinearLayout control. Set its id attribute to root and set its orienta-

tion attribute to vertical. Set its layout_width and layout_height attrib-

utes to fill_parent. All subsequent controls will be added inside this

LinearLayout control.

3. Add a TextView control to display the Password label text. Then add an

EditText control and set its id attribute to EditText_Pwd1, its maxLines

attribute to 1, and its inputType attribute to textPassword.

4. Add another TextView control to display the Password label text again. Then

add another EditText control and set its id attribute to EditText_Pwd2, its

maxLines attribute to 1, and its inputType attribute to textPassword.

5. Finally, add a TextView control with the id attribute TextView_PwdProblem

to display the password status label text. This TextView control will display

whether the two password fields match.

At this point, save the password_dialog.xml layout file.

Adding the Password Dialog to the QuizSettingsActivity Class
To create a custom AlertDialog, you must first declare a unique identifier to repre-

sent the dialog, as follows:

static final int PASSWORD_DIALOG_ID = 1;

Next, you need to update the onCreateDialog() method of QuizSettingsActivity

to include a case statement for the new Dialog identifier:

case PASSWORD_DIALOG_ID:
// Build Dialog
// Return Dialog

Now let’s look at how to build the password dialog from the ground up. You begin

by inflating (loading) the layout you created into a View control:

ptg

Working with Custom Dialogs 191

LayoutInflater inflater =
(LayoutInflater) getSystemService(Context.LAYOUT_INFLATER_SERVICE);

final View layout =
inflater.inflate(R.layout.password_dialog,

(ViewGroup) findViewById(R.id.root));

To load the password_dialog.xml layout file into a view, you must retrieve

LayoutInflater and then call the inflate() method, passing in the layout

resource identifier as well as the root layout control’s identifier (in this case, the

LinearLayout encapsulating the Dialog controls, called root).

Once a layout has been inflated into a View, it can be modified programmatically

much like a regular layout. At this point, controls can be populated with data, and

event listeners can be registered.

For example, to retrieve the EditText_Pwd1 control from the layout view, you call

the findViewById() method, as follows:

final EditText p1 =
(EditText) layout.findViewById(R.id.EditText_Pwd1);

final EditText p2 =
(EditText) layout.findViewById(R.id.EditText_Pwd2);

At this point, you register any event listeners on the EditText fields, such as those

discussed earlier to watch EditText input and match the strings as the user types.

For example, you can register to listen for text change events in the second

EditText password field using a TextWatcher and match the contents of the field

to that in the first EditText field. You can then display the password matching sta-

tus in the third TextView control we created called TextView_PwdProblem:

final TextView error =
(TextView) layout.findViewById(R.id.TextView_PwdProblem);

p2.addTextChangedListener(new TextWatcher() {
@Override
public void afterTextChanged(Editable s) {

String strPass1 = p1.getText().toString();
String strPass2 = p2.getText().toString();
if (strPass1.equals(strPass2)) {

error.setText(R.string.settings_pwd_equal);
} else {

error.setText(R.string.settings_pwd_not_equal);
}

}

// ... other required overrides do nothing
});

The TextWatcher has a number of methods which require implementation.

However, the one we’re must interested in is the afterTextChanged() method.

ptg

192 HOUR 11: Using Dialogs to Collect User Input

Now that you have inflated the view and configured it for use, you can to attach it

to AlertDialog. To do this, you use the AlertDialog.Builder class:

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setView(layout);
builder.setTitle(R.string.settings_button_pwd);

First, you set the view of AlertDialog.Builder to the layout you inflated. Then you

set the title of the Dialog window with the setTitle() method.

Your dialog will have two Button controls: a positive button (OK) and a negative

button (Cancel). Because you do not want this dialog cached for reuse by the activi-

ty, both Button handlers need to call the removeDialog() method, which destroys

the dialog:

QuizSettingsActivity.this
.removeDialog(PASSWORD_DIALOG_ID);

The positive button (OK) requires some handling. When the user clicks the positive

button, you need to extract the password text from the EditText controls, compare

it, and, if two strings match, store the new password:

builder.setPositiveButton(android.R.string.ok,
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {
TextView passwordInfo =

(TextView) findViewById(R.id.TextView_Password_Info);
String strPassword1 = p1.getText().toString();
String strPassword2 = p2.getText().toString();
if (strPassword1.equals(strPassword2)) {

Editor editor = mGameSettings.edit();
editor.putString(GAME_PREFERENCES_PASSWORD,

strPassword1);
editor.commit();
passwordInfo.setText(R.string.settings_pwd_set);

} else {
Log.d(DEBUG_TAG, “Passwords do not match. “

+ “Not saving. Keeping old password (if set).”);
}
QuizSettingsActivity.this

.removeDialog(PASSWORD_DIALOG_ID);
}

});

The negative button, Cancel, simply returns the user to the main screen. You config-

ure the negative button using the setNegativeButton() method of the builder:

builder.setNegativeButton(android.R.string.cancel,
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {
QuizSettingsActivity.this

.removeDialog(PASSWORD_DIALOG_ID);
}

});

ptg

Working with Custom Dialogs 193

When your dialog is fully configured using the builder, you call the create()

method to generate the custom AlertDialog and return it:

AlertDialog passwordDialog = builder.create();
return passwordDialog;

Launching the Custom Password Dialog
A custom dialog, such as your password dialog, is launched the same way as a regu-

lar dialog: using the showDialog() method of the activity. On the settings screen of

the Been There, Done That! application, the user triggers the custom password dia-

log to launch by pressing the Button control called Button_Password. Therefore,

you can register for click events on this Button control and launch the password

dialog accordingly:

Button setPassword = (Button) findViewById(R.id.Button_Password);
setPassword.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
showDialog(PASSWORD_DIALOG_ID);

}
});

Figure 11.6 shows the resulting settings screen, with Dialog controls.

FIGURE 11.6
The complete
Been There,
Done That! set-
tings screen.

ptg

194 HOUR 11: Using Dialogs to Collect User Input

Summary
In this hour, you learned how an activity can use Dialog controls to simplify screen

functionality and layout—specifically on the settings screen of the Been There, Done

That! application. A dialog can be used to display appropriate information to the

user in the form of a pop-up window. There are Dialog types for inputting dates,

times, and special characters as well as helper Dialog types for showing progress or

displaying alert messages. You can also create custom Dialog controls.

Q&A
Q. How is dialog information saved within an activity?

A. Each activity keeps a pool of Dialog controls around for use and will reuse a

Dialog control when asked to be shown again. Basically, a dialog is shown

using the showDialog() method and added to the pool. Each dialog is dis-

missed but sticks around in the pool until either the activity is destroyed or the

removeDialog() method is called explicitly.

Q. How can I determine which activity launched a Dialog control?

A. You can use the getOwnerActivity() method of the Dialog class to deter-

mine the parent activity of a specific Dialog control.

Workshop

Quiz
1. What class can be used to create pop-up windows within an activity?

A. Popup

B. ActivityWindow

C. Dialog

2. True or False: You can use the same dialog for multiple uses if the layout is the

same.

3. True or False: Only certain layouts can be used with a dialog, such as Alert

and ContinueOrCancel.

ptg

195Workshop

Answers
1. C. The Dialog class and its subclasses are used to create pop-up windows

within an activity, using the onCreateDialog() and showDialog() methods.

2. True. But if you want the data shown to be different, you need to override

onPrepareDialog() in the activity.

3. False. You can use any layout you want for a dialog.

Exercises
1. Update the DatePickerDialog onDateSet() method to save the date of birth

to a TextView to display on the main settings screen.

2. Update the password dialog to display the status of the password (set or unset)

in a TextView on the main settings screen.

ptg

This page intentionally left blank

ptg

HOUR 12

Adding Application Logic

What You’ll Learn in This Hour:
. Designing the game screen

. Working with ViewSwitcher Controls

. Data structures and parsing XML

. Wiring up the game logic and keeping game state

In this hour, you wire up the screen at the heart of the Been There, Done That! applica-

tion—the game play screen. This screen prompts the user to answer a series of trivia ques-

tions and stores the resulting score information. Because the screen must display a

dynamic series of images and text strings, you can use several new View controls, includ-

ing ImageSwitcher and TextSwitcher, to help transition between questions in the quiz.

You can also update QuizGameActivity with game logic and game state information,

including the retrieval of batches of new questions, as a user progresses through the quiz.

Designing the Game Screen
The game screen must lead the user through a series of trivia questions and log the num-

ber of positive responses (the score). Each trivia question has a corresponding graphic to

display. For example, the game might show the user a picture of a mountain and ask if

the user has ever climbed a mountain.

ptg

198 HOUR 12: Adding Application Logic

You want the game screen to share some common features with the rest of the appli-

cation: It should use the same background graphic, font, and color scheme as the

other screens. To translate the rough design into the appropriate layout design, you

need to update the /res/layout/game.xml layout file and the QuizGameActivity

class.

RelativeLayout works especially well for displaying icon graphics in each of the

four corners of the screen. You can also use another RelativeLayout to display

each question to the user, using one ImageView control and one TextView control,

as well as two Button controls to handle responses.

Figure 12.2 shows the basic layout design of the game screen.

FIGURE 12.1
Rough design
for the Been
There, Done
That! game
screen.

Icon Icon

IconIcon

Graphic

Yes No

TRIVIA QUESTION
HERE?

Unlike previous screens you have developed, the game screen does not need the cus-

tomary title bar. Instead, you want to use the entire screen to display the game com-

ponents. Figure 12.1 shows a rough design of the game screen.

ptg

Designing the Game Screen 199

Each time the user clicks a Button control, the game screen will update the

ImageView and TextView controls to display the next question. To smoothly transi-

tion (and animate) from one question to the next, you can use the special controls

ImageSwitcher and TextSwitcher, which are subclasses of the ViewSwitcher class.

A ViewSwitcher control can animate between two child View controls: the current

View control and the next View control to display. Only one View control is dis-

played at any time, but animations, such as fades or rotates, can be used during the

transition between View controls. These child View controls are generated using

ViewFactory. For example, ImageSwitcher and its corresponding ViewFactory can

be used to generate the current question ImageView and switch in the next ques-

tion’s ImageView when the user clicks a Button control. Similarly, a TextSwitcher

control has two child TextView controls, with transitional animation applying to

the text.

FIGURE 12.2
Layout design
for the Been
There, Done
That! game
screen.

ImageView

ImageView ImageView

ImageView

RelativeLayout

LinearLayout (Vertical Orientation)

RelativeLayout

ImageView
(Question-Specific Graphic)

TextView
(Question-Specific Text)

Button (“Yes”) Button (“No”)

ptg

200 HOUR 12: Adding Application Logic

Figure 12.3 shows the updated layout design of the game screen, which uses an

ImageSwitcher control and a TextSwitcher control.

FIGURE 12.3
Revised layout
design for the
Been There,
Done That! game
screen with
ImageSwitcher
and
TextSwitcher
controls.

ImageView

ImageView ImageView

ImageView

RelativeLayout

LinearLayout (Vertical Orientation)

RelativeLayout

ImageSwitcher
(Question-Specific Graphic)

TextSwitcher
(Question-Specific Text)

Button (“Yes”) Button (“No”)

Implementing the Game Screen Layout
To implement the game screen, you begin by adding new resources to the project.

Then you need to update the game.xml layout resource to reflect the game screen

design.

Adding New Project Resources
For the game screen, you need to add some new resources:

. String resources for the text on the Button controls as well as the text to dis-

play when no questions are available

ptg

Implementing the Game Screen Layout 201

. Miscellaneous Dimension and Color resources needed to design the game

screen controls

. Two XML resources with mock question batches

You should now be comfortable creating any String, Dimension, and Color

resources you need for the screen layout, so let’s talk for a moment about the mock

question batches.

Eventually, the questions used by the Been There, Done That! application will be

retrieved from a server on the Internet. However, for now, you can create two batch-

es of mock questions that can be accessed locally as XML: /res/xml/sampleques-

tions.xml and /res/xml/samplequestions2.xml. Later, when you add network

support to the application, you will retrieve this same XML from a server. By includ-

ing mock batches of questions now, you can iron out the game logic without worry-

ing about network connectivity.

Regardless of whether the batch of questions is sourced locally or from a remote

server, the XML block looks the same. Here is what it looks like:

<?xml version=”1.0” encoding=”utf-8”?>
<!— This is a mock question XML chunk —>

<questions>
<question

number=”1”
text=
“Have you ever been on an African safari?”

imageUrl=
“http://www.perlgurl.org/Android/BeenThereDoneThat/Questions/q1.png”

/>
<question

number=”2”
text=
“Have you ever climbed a mountain?”

imageUrl=
“http://www.perlgurl.org/Android/BeenThereDoneThat/Questions/q2.png”

/>
<question

number=”3”
text=
“Have you ever milked a cow?”

imageUrl=
“http://www.perlgurl.org/Android/BeenThereDoneThat/Questions/q3.png”

/>
</questions>

As you can see, the XML is very simple. It has one tag called <questions>, which

can contain a number of <question> tags. Each <question> tag has three attrib-

utes: the question identifier (number), the question itself (text), and the URL to the

image associated with the question (imageUrl). Note that you use remote graphics

ptg

202 HOUR 12: Adding Application Logic

sourced from the Internet instead of adding each and every question graphic to the

resources of the application.

Updating the Game Screen Layout
The game.xml layout file dictates the user interface of the game screen. Again, you

open the Eclipse layout resource editor and remove all existing controls from the lay-

out. You then follow these steps to generate the layout you want, based on your design:

1. Add a new LinearLayout control and set its background attribute to

@drawable/bkgrnd. All subsequent controls will be added inside the

LinearLayout control.

2. Add a RelativeLayout control and set layout_width to wrap_content and

layout_height to wrap_content.

3. Within the RelativeLayout control, add four ImageView controls—one for

each corner of the screen. Set each control’s image src attribute to the @draw-

able/quizicon graphic. Give each ImageView control a specific id attribute:

@+id/ImageView_Header, @+id/ImageView_Header2,

@+id/ImageView_Header3, and @+id/ImageView_Header4.

4. Find the ImageView control with the id attribute set to ImageView_Header

and set its layout_alignParentLeft and layout_alignParentTop attributes

to true.

5. Find the ImageView control with the id attribute set to ImageView_Header2

and set its layout_alignParentRight and layout_alignParentTop attrib-

utes to true.

6. Find the ImageView control with the id attribute set to ImageView_Header3

and set its layout_alignParentLeft and layout_alignParentBottom attrib-

utes to true.

7. Find the ImageView control with the id attribute set to ImageView_Header4

and set its layout_alignParentRight and layout_alignParentBottom

attributes to true.

8. Still within the RelativeLayout control, add another RelativeLayout control

for the trivia question region after the ImageView control; name it

ImageView_Header2. Set its id attribute to the value

@+id/RelativeLayout_Content. Set layout_width to wrap_content and

layout_height to wrap_content. Also, set its gravity attribute to center

and its layout_margin to 45px.

ptg

Watch
Out!

Working with ViewSwitcher Controls 203

9. Within the new RelativeLayout control, add an ImageSwitcher control with

an id of @+id/ImageSwitcher_QuestionImage. Set layout_width to

wrap_content and layout_height to wrap_content. Also, set its

layout_alignParentTop and layout_centerInParent attributes to true.

10. Below the ImageSwitcher control, add a TextSwitcher control with an id of

@+id/TextSwitcher_QuestionText. Set layout_width to wrap_content and

layout_height to wrap_content. Also, set its layout_centerInParent attrib-

ute to true and its layout_below attribute to

@+id/ImageSwitcher_QuestionImage.

11. Below the TextSwitcher control, add a Button control with an id of

@+id/Button_Yes. Set layout_width to wrap_content and layout_height to

wrap_content. Also, set its layout_alignParentBottom and

layout_alignParentLeft attributes to true. Set its text attribute to a

resource string (“Yes”) and tweak any other attributes to make the Button

control look nice.

12. Add another Button control below the previous Button control, with an id of

@+id/Button_No. Set the layout_width to wrap_content and the

layout_height to wrap_content. Also, set its layout_alignParentBottom

and layout_alignParentRight attributes to true. Set its text attribute to a

resource string (“No”) and tweak any other attributes to make the Button con-

trol look nice.

At this point, save the game.xml layout file.

The Eclipse layout resource editor does not display TextSwitcher or
ImageSwitcher controls in design mode. You must view the resulting TextView
and ImageView controls generated by the switchers by using the Android emula-
tor. In this case, the layout designer does not reflect actual application look and
feel.

Working with ViewSwitcher Controls
For situations in which an activity is going to be updating the content of a View

control repeatedly, the Android SDK provides a mechanism called a ViewSwitcher

control. Using a ViewSwitcher is an efficient way to update content on a screen. A

ViewSwitcher control has two children and handles transition from the currently

visible child view to the next view to be displayed. The child View controls of a

ViewSwitcher control can be generated programmatically using ViewFactory.

ptg

Did you
Know?

204 HOUR 12: Adding Application Logic

There are two subclasses of the ViewSwitcher class:

. TextSwitcher—A ViewSwitcher control that allows swapping between two

TextView controls.

. ImageSwitcher—A ViewSwitcher control that allows swapping between two

ImageView controls.

Although a ViewSwitcher control only ever has two children, it can display any

number of View controls in succession. ViewFactory generates the content of the

next view, such as the ImageSwitcher and TextSwitcher controls for iterating

through the question images and text.

You can create a custom switcher by implementing your own subclass of the
ViewSwitcher class.

Using ViewFactory to Generate ViewSwitcher
Views
When you create a ViewSwitcher control, you can configure ViewFactory using the

setFactory() method. ViewFactory has one required method, the makeView()

method. This method must return a View of the appropriate type. For example,

ViewFactory for TextSwitcher should return a properly configured TextView,

whereas ViewFactory for ImageSwitcher would return ImageView.

Here is an implementation of a ViewFactory control for an ImageSwitcher control

that you could use to generate each question graphic on the game play screen:

private class MyImageSwitcherFactory implements ViewSwitcher.ViewFactory {
public View makeView() {

ImageView imageView = new ImageView(QuizGameActivity.this);
imageView.setScaleType(ImageView.ScaleType.FIT_CENTER);
imageView .setLayoutParams(new ImageSwitcher.LayoutParams(

LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));
return imageView ;

}
}

Note that the source, or contents, of the view have not been configured in the

makeView() method. Instead, you can consider this a template that the

ViewSwitcher control will use to display each child view.

When you create a ViewSwitcher control, you can configure its ViewFactory using

the setFactory() method. For example, to set ViewFactory of the ImageSwitcher

control you created for MyImageSwitcherFactory, you do the following:

ptg

Working with ViewSwitcher Controls 205

ImageSwitcher questionImageSwitcher =
(ImageSwitcher) findViewById(R.id.ImageSwitcher_QuestionImage);

questionImageSwitcher.setFactory(new MyImageSwitcherFactory());

Similarly, you must create a ViewFactory to generate the TextView controls for

each question on the game screen. Here is an implementation of a ViewFactory

called MyTextSwitcherFactory that does just that:

private class MyTextSwitcherFactory implements ViewSwitcher.ViewFactory {
public View makeView() {

TextView textView = new TextView(QuizGameActivity.this);
textView.setGravity(Gravity.CENTER);
Resources res = getResources();
float dimension = res.getDimension(R.dimen.game_question_size);
int titleColor = res.getColor(R.color.title_color);
int shadowColor = res.getColor(R.color.title_glow);
textView.setTextSize(dimension);
textView.setTextColor(titleColor);
textView.setShadowLayer(10, 5, 5, shadowColor);
return textView;

}
}

Note that, much like the MyImageSwitcherFactory implementation, the

MyTextSwitcherFactory also implements the makeView() method—this time gen-

erating the appropriate TextView control with some text size, color, and gravity

attributes.

Working with TextSwitcher
The TextSwitcher control enables an activity to animate between two TextView

controls. You need to include a TextSwitcher control called TextSwitcher_

QuestionText in the layout of the game screen to display each trivia question to

the user.

Initializing a TextSwitcher Control
To initialize a TextSwitcher control, you simply set its ViewFactory and then use

the setCurrentText() method, like so:

TextSwitcher questionTextSwitcher = (TextSwitcher)
findViewById(R.id.TextSwitcher_QuestionText);

questionTextSwitcher.setFactory(new MyTextSwitcherFactory());
questionTextSwitcher.setCurrentText(“First Text String”);

Updating a TextSwitcher Control
When you want to update a TextSwitcher control with a new TextView control,

you can call the setText() method:

ptg

By the
Way

206 HOUR 12: Adding Application Logic

TextSwitcher questionTextSwitcher = (TextSwitcher)
findViewById(R.id.TextSwitcher_QuestionText);

questionTextSwitcher.setText(“Next Text String”);

Calling the setText() method causes MyTextSwitcherFactory to generate a new

TextView control with the String contents supplied in the setText() parameter.

Working with ImageSwitcher
The ImageSwitcher control enables an activity to animate between two ImageView

controls. You have included an ImageSwitcher control called ImageSwitcher_

QuestionImage in the layout of the game screen to display each trivia question

image to the user.

Initializing an ImageSwitcher Control
To initialize an ImageSwitcher control, you simply set its ViewFactory and then

use one of the three methods to set the image. In this case, you use the

setImageDrawable() method, like so:

ImageSwitcher questionImageSwitcher = (ImageSwitcher)
findViewById(R.id.ImageSwitcher_QuestionImage);

questionImageSwitcher.setFactory(new MyImageSwitcherFactory());
Drawable image = getQuestionImageDrawable(startingQuestionNumber);
questionImageSwitcher.setImageDrawable(image);

Unfortunately, you cannot use the setImageURI() method with a remote (online)
URL with ImageSwitcher at this time. Instead, you need to perform a bit of extra
work to download the image from the supplied URL and save it into an image
Drawable object. The implementation of the getQuestionImageDrawable()
method does just that:

private Drawable getQuestionImageDrawable(int questionNumber) {
Drawable image;
URL imageUrl;

try {
// Create a Drawable by decoding a stream from a remote URL
imageUrl = new URL(getQuestionImageUrl(questionNumber));
Bitmap bitmap = BitmapFactory.decodeStream(imageUrl.openStream());
image = new BitmapDrawable(bitmap);

} catch (Exception e) {
Log.e(DEBUG_TAG, “Decoding Bitmap stream failed.”);
image = getResources().getDrawable(R.drawable.noquestion);

}
return image;

}

ptg

Working with ViewSwitcher Controls 207

The getQuestionImageUrl() method is a simple helper method that retrieves
the appropriate graphic web address for a given question. This information is
stored in the Hashtable of questions. (We’ll talk more about how we handle ques-
tions in a moment.) For the full implementation of the getQuestionImageUrl()
method, see the code provided with this book.

You use the URL class to encapsulate the remote address to the PNG image file
you want to load into ImageSwitcher. You then dump the data into
BitmapDrawable. Finally, using the stream methods requires the android.per-
mission.INTERNET permission, which needs to be added to the Android manifest
file for the project.

Updating ImageSwitcher
When you want to update ImageSwitcher with a new ImageView control, you call

the setImageDrawable() method:

ImageSwitcher questionImageSwitcher =
(ImageSwitcher) findViewById(R.id.ImageSwitcher_QuestionImage);

Drawable image = getQuestionImageDrawable(nextQuestionNumber);
questionImageSwitcher.setImageDrawable(image);

Calling the setImageDrawable() method causes MyImageSwitcherFactory to gen-

erate a new ImageView control with the Drawable object supplied in the

setImageDrawable() parameter.

Animating ViewSwitcher
To animate the transition between the child View controls of ViewSwitcher, you use

the setInAnimation() and setOutAnimation() methods. For example, to add

fade-in and fade-out animations to the TextSwitcher control, you could load and

set the built-in Android fade animations as follows:

Animation in = AnimationUtils.loadAnimation(this, android.R.anim.fade_in);
Animation out = AnimationUtils.loadAnimation(this, android.R.anim.fade_out);
TextSwitcher questionTextSwitcher =

(TextSwitcher) findViewById(R.id.TextSwitcher_QuestionText);
questionTextSwitcher.setInAnimation(in);
questionTextSwitcher.setOutAnimation(out);

Now each time the setText() method or setCurrentText() method of

TextSwitcher is called, this fade animation will run. You can now improve the

question transition further by adding the same animations to the ImageSwitcher

displaying the question images.

ptg

208 HOUR 12: Adding Application Logic

Wiring Up Game Logic
The Been There, Done That! application has an open-ended set of trivia questions.

Therefore, you cannot save all the questions as resources but instead need to devel-

op a simple way to get new questions on-the-fly. Also, by storing the complete set of

trivia questions in a remote location, you streamline the application on the handset,

saving disk space.

In the final version of the application, you will be retrieving new batches of ques-

tions from the Internet. For now, though, you can retrieve several batches of ques-

tions from local XML files. The application can keep a working set of questions in

memory, and new batches of questions can be loaded as required. To implement the

game logic for the game screen, follow these steps:

1. Update SharedPreferences with game state settings.

2. Handle the retrieval and parsing batches of trivia questions (XML) into a rele-

vant data structure.

3. Implement Button click handling to drive the ImageSwitcher and

TextSwitcher updates as well as the game logic.

4. Handle edge cases, such as when no more questions are available.

The following sections describe these steps in more detail.

Updating SharedPreferences to Include Game State Settings
To keep track of game state, you need to add two more Integer settings to the

application SharedPreferences: the game score and the current question number.

To add these preferences, you first declare the preference name String values to the

QuizActivity.java class:

public static final String GAME_PREFERENCES_SCORE = “Score”;
public static final String GAME_PREFERENCES_CURRENT_QUESTION = “CurQuestion”;

Next, you define the SharedPreferences object as a member variable of the

QuizGameActivity class:

SharedPreferences mGameSettings;

You initialize the mGameSettings member variable in the onCreate() method of

the QuizGameActivity class:

mGameSettings = getSharedPreferences(GAME_PREFERENCES, Context.MODE_PRIVATE);

ptg

Wiring Up Game Logic 209

Now you can use SharedPreferences throughout the class, as needed, to read and

write game settings such as the current question and the game score. For example,

you could get the current question by using the getInt() method of

SharedPreferences as follows:

int startingQuestionNumber =
mGameSettings.getInt(GAME_PREFERENCES_CURRENT_QUESTION, 0);

Retrieving, Parsing, and Storing Trivia Question Data
When the Been There, Done That! application runs out of questions to display to the

user, it attempts to retrieve a new batch of questions. This architecture makes

enabling networking for the application more straightforward in future hours

because the parsing of the XML remains the same.

Each batch of questions arrives as a simple XML file, which needs to be parsed. You

can store the current batch of questions in memory by using a simple but powerful

data structure—in this case, a Hashtable member variable.

Declaring Helpful String Literals for Question Parsing
Take a moment to review the XML format used by the question batches, discussed

earlier. To parse the question batches, you need to add several String literals to rep-

resent the XML tags and attributes to the QuizActivity.java class:

public static final String XML_TAG_QUESTION_BLOCK = “questions”;
public static final String XML_TAG_QUESTION = “question”;
public static final String XML_TAG_QUESTION_ATTRIBUTE_NUMBER = “number”;
public static final String XML_TAG_QUESTION_ATTRIBUTE_TEXT = “text”;
public static final String XML_TAG_QUESTION_ATTRIBUTE_IMAGEURL = “imageUrl”;

While you are at it, you can also define the default batch size, to simplify allocation

of storage for questions while parsing the XML:

public static final int QUESTION_BATCH_SIZE = 15;

Storing the Current Batch of Questions in a Hashtable
Now within the QuizGameActivity class, you can implement a simple helper class

called Question to encapsulate each trivia question:

private class Question {
int mNumber;
String mText;
String mImageUrl;

public Question(int questionNum, String questionText, String
questionImageUrl) {
mNumber = questionNum;
mText = questionText;

ptg

210 HOUR 12: Adding Application Logic

mImageUrl = questionImageUrl;
}

}

You will not be storing all the questions locally. Instead, you fetch a batch of ques-

tions at a time (for now, from local mock XML files, later from the web). You need a

place to store these questions, so declare a Hashtable member variable within the

QuizGameActivity class to hold a batch Question objects in memory after you

have parsed a batch of XML:

Hashtable<Integer, Question> mQuestions;

The Android SDK includes many commonly used Java classes. For example, you’ll
find many familiar data structures (such as Hashtable) and utility classes in the
java.util package, as well as additional specialized classes in the
android.util package.

You can instantiate the Hashtable member variable in the onCreate() method of

the QuizGameActivity class as follows:

mQuestions = new Hashtable<Integer, Question>(QUESTION_BATCH_SIZE);

Now, assuming we have some XML representing a new batch of questions, we can

create an XmlResourceParser object called questionBatch. The

XmlResourceParser can be used it to extract the data for each question and save

into a Hashtable member variable of type Question, using the put() method, like

this:

String questionNumber =
questionBatch.getAttributeValue(null, XML_TAG_QUESTION_ATTRIBUTE_NUMBER);

Integer questionNum =
new Integer(questionNumber);

String questionText =
questionBatch.getAttributeValue(null, XML_TAG_QUESTION_ATTRIBUTE_TEXT);

String questionImageUrl =
questionBatch.getAttributeValue(null, XML_TAG_QUESTION_ATTRIBUTE_IMAGEURL);

// Save data to our hashtable
mQuestions.put(questionNum,

new Question(questionNum, questionText, questionImageUrl));

You can check for the existence of a specific question in the Hashtable member

variable by question number, using the containsKey() method. You can also

retrieve a specific Question object by its question number by using the get()

method:

Question curQuestion = (Question) mQuestions.get(questionNumber);

Did you
Know?

ptg

Wiring Up Game Logic 211

Handling Button Presses
The Button controls on the game screen are used to drive the ImageSwitcher and

TextSwitcher controls. Each time the user clicks a Button control, any score

changes are logged, and the ViewSwitcher controls are updated to display the next

question. In this way, the Button controls drive the activity forward, and the user

progresses through the trivia quiz questions.

There is little difference between the handling of the Yes and No Button controls.

Let’s take a closer look at the OnClickListener.OnClick() method of the Yes

Button control:

Button yesButton = (Button) findViewById(R.id.Button_Yes);
yesButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
handleAnswerAndShowNextQuestion(true);

}
});

The View.onClickListener() method for the corresponding No Button is almost

identical to the Yes Button control handler shown here. The only difference is that

you pass a false value into the handleAnswerAndShowNextQuestion() method.

This is a custom method you will implement to log the score change and handle

any ViewSwitcher logic.

Now let’s look in more detail at the handleAnswerAndShowNextQuestion() method,

which takes one parameter, boolean bAnswer. First, examine the following pseudo-

code showing what this Button handler will do:

private void handleAnswerAndShowNextQuestion(boolean bAnswer) {
// Load game settings like score and current question
// Update score if answer is “yes”
// Load the next question, handling if there are no more questions

}

Now let’s work through the pseudo-code and implement this method. First, you must

retrieve the current game settings, including the game score and the next question

number, from SharedPreferences:

int curScore =
mGameSettings.getInt(GAME_PREFERENCES_SCORE, 0);

int nextQuestionNumber =
mGameSettings.getInt(GAME_PREFERENCES_CURRENT_QUESTION, 1) + 1;

Next, you need to increment the value of the next question in SharedPreferences:

Editor editor = mGameSettings.edit();
editor.putInt(GAME_PREFERENCES_CURRENT_QUESTION, nextQuestionNumber);

ptg

212 HOUR 12: Adding Application Logic

If the user clicked the Yes button, you also need to update the score and save it to

SharedPreferences:

if (bAnswer == true) {
editor.putInt(GAME_PREFERENCES_SCORE, curScore + 1);

}

After you have changed all the SharedPreferences values necessary, you save the

changes with the commit() method of the editor:

editor.commit();

Next, you check whether the next question is available in the hashtable. If you need

to retrieve a new batch of questions, do so now:

if (mQuestions.containsKey(nextQuestionNumber) == false) {
// Load next batch
try {

loadQuestionBatch(nextQuestionNumber);
} catch (Exception e) {

Log.e(DEBUG_TAG, “Loading updated question batch failed”, e);
}

}

Finally, you update the TextSwitcher and the ImageSwitcher controls with the text

and image for the next question:

if (mQuestions.containsKey(nextQuestionNumber) == true) {
// Update question text
TextSwitcher questionTextSwitcher =

(TextSwitcher) findViewById(R.id.TextSwitcher_QuestionText);
questionTextSwitcher.setText(getQuestionText(nextQuestionNumber));

// Update question image
ImageSwitcher questionImageSwitcher =

(ImageSwitcher) findViewById(R.id.ImageSwitcher_QuestionImage);
Drawable image = getQuestionImageDrawable(nextQuestionNumber);
questionImageSwitcher.setImageDrawable(image);

} else {
handleNoQuestions();

}

When you run the application and launch the game screen, it should look some-

thing like Figure 12.4.

ptg
Did you

Know?

Wiring Up Game Logic 213

There are two easy ways to “reset” the quiz for testing purposes. The first method
is to delete the application’s SharedPreferences file from the Android file system
and restart the emulator. You use the Eclipse DDMS perspective to navigate to
the data directory of the application and delete the associated
SharedPreferences file. You can also uninstall and reinstall the application by
using the Settings Menu item from the Android Home screen. Adding a reset
mechanism to the Been There, Done That! application is left as an exercise to the
reader at the end of this hour.

Addressing Edge Cases
If there are no more questions available, you must inform the user. This case is han-

dled by the handleNoQuestions() method. First, you set the text and image to

appropriate values, as follows:

TextSwitcher questionTextSwitcher =
(TextSwitcher) findViewById(R.id.TextSwitcher_QuestionText);

questionTextSwitcher.setText(getResources().getText(R.string.no_questions));
ImageSwitcher questionImageSwitcher =

(ImageSwitcher) findViewById(R.id.ImageSwitcher_QuestionImage);
questionImageSwitcher.setImageResource(R.drawable.noquestion);

FIGURE 12.4
The Been There,
Done That!
game screen.

ptg

214 HOUR 12: Adding Application Logic

You should also take this opportunity to disable the Button controls:

Button yesButton =
(Button) findViewById(R.id.Button_Yes);

yesButton.setEnabled(false);

Button noButton =
(Button) findViewById(R.id.Button_No);

noButton.setEnabled(false);

When the application runs out of questions, the game screen looks as shown in

Figure 12.5. The user is informed that there are no more questions available and is

not allowed to press any of the Button controls. Instead, the user must press the

Back button and return to the main menu.

FIGURE 12.5
The Been There,
Done That!
game screen
when no
questions are
available.

Summary
In this hour, you implemented the most important screen of the Been There, Done That! application—

the game screen. You learned how to animate between View controls by using ImageSwitcher and

TextSwitcher. You also got your first look at the various data structures available in the Android SDK

and used a Hashtable member variable to store a batch of questions parsed from XML. Finally, you

used the application’s SharedPreferences to keep track of settings and game state information.

ptg

215Workshop

Q&A
Q. If I’m storing images locally, can I use the ImageSwitcher setImageURI()

method instead of the setImageDrawable() method?

A. Of course. In fact, we recommend it. If the graphic is locally available, use the

setImageURI() method to greatly simplify the code for loading a graphic into

an ImageSwitcher (or ImageView) control. There is no need for streams or

Drawable objects in memory.

Q. When using a ViewSwitcher control, can I set my own animations?

A. Yes, you can create any animation you want between the old View control

and the new View control. However, keep in mind that once a View control

has been switched out, the only way to bring it back is by setting it as the next

View control. There is no notion of a previous View control with the

ViewSwitcher control.

Workshop

Quiz
1. What subclasses are available for the ViewSwitcher class?

A. TextSwitcher

B. VideoSwitcher

C. ImageSwitcher

D. AudioSwitcher

2. True or False: The TextView controls used by a TextSwitcher control must be

defined before the TextSwitcher control can be used.

3. True or False: Standard packages such as java.io, java.math, java.net, and

java.util are available within the Android SDK.

ptg

216 HOUR 12: Adding Application Logic

Answers
1. A and C. The ViewSwitcher class has two subclasses: TextSwitcher (for ani-

mating between two TextView controls) and ImageSwitcher (for animating

between two ImageView controls).

2. False. The TextView controls displayed by a TextSwitcher control can be cre-

ated on-the-fly by using ViewFactory.

3. True. Many standard Java packages are available within the Android SDK.

There are also a number of packages specially designed for Android under the

android.* package tree. See the Android SDK documentation for a complete

list of available packages.

Exercises
1. Add a new option to the options menu of the game screen to reset the trivia

quiz. Make sure you clear only the appropriate game settings, not all of the

preferences, in SharedPreferences.

2. Modify the application to use a different data structure, like a linked list,

instead of a Hashtable.

ptg

HOUR 13

Working with Images and the
Camera

What You’ll Learn in This Hour:
. Designing the avatar feature

. Working with ImageButton controls

. Launching activities and handling results

. Working with the camera and the gallery

. Working with bitmaps

In this hour, you add a new feature to the Been There, Done That! application—the ability

for the user to add a custom avatar or small graphic from the settings screen. The user will

be able to set the avatar in two ways: by using the camera that is built in to the handset

or by choosing an image that is already stored on the handset.

Designing the Avatar Feature
Many mobile applications today are networked and have some social component. One

way for users to differentiate themselves from others is by setting custom icons to represent

who they are. To give users this ability, you can implement the avatar feature on the set-

tings screen. Avatars come in many forms; an avatar may be a close-up photograph of

the user’s face, or it might be a funky graphic that speaks to the user’s personality.

To incorporate of the avatar feature into the Been There, Done That! Settings screen, you

need to modify the screen design slightly to include the graphic as well as some mecha-

nism by which the user can change the graphic. Figure 13.1 shows a rough design of how

the avatar feature will be incorporated into the settings screen.

ptg

218 HOUR 13: Working with Images and the Camera

Space is at a premium in a mobile application, and you want to keep the settings

screen for the Been There, Done That! application as easy to use as possible. The

avatar feature has two requirements: The user must be able to set the avatar from a

custom graphic, and the graphic chosen must be displayed on the settings screen. Of

the various controls available in Android, the ImageButton control would be able to

handle both tasks.

To incorporate your avatar design changes into the /res/layout/settings.xml

layout file, you need to modify the region of the screen where the nickname controls

reside.

Because you want to add a control to the left of the nickname controls, you need to

encapsulate all three controls (the avatar ImageButton, nickname label TextView,

and nickname EditText controls) inside a child layout control such as a nested

LinearLayout Control (horizontally oriented). By nesting the nickname controls in

their own vertically oriented LinearLayout control, you get the intended results.

Figure 13.2 shows the layout updates required by the avatar feature.

FIGURE 13.1
Rough design for
the Been There,
Done That! avatar
feature.

Settings

AVATAR
(Picture)

NICKNAME:
(20 characters max)

EMAIL:
(Will be used as unique account id)

PASSWORD:
(Password requires entering twice to verify)

BIRTH DATE:
(DOB requires entering Month, Day, Year)

GENDER:
(Male, Female, or Prefer Not To Say)

ptg

Adding an Avatar to the Settings Screen Layout 219

But wait! You want the user to be able to configure the avatar by using the camera

(to take a new picture) or by choosing an image already saved on the device. No

problem. You can do this by handling clicks and long-clicks on the same Button

control. The user can click the ImageButton control to launch the camera or long-

click the same ImageButton control to launch the image picker.

Adding an Avatar to the Settings
Screen Layout
To update the settings screen, you begin by adding new resources to the project, and

then you update the settings.xml layout resource to reflect the new settings screen

design.

To enable the avatar feature in the Been There, Done That! application, you need to

add some new resources, including any String, Dimension, Color, and Drawable

resources you might need. For example, you should add a new graphic resource to

show as the default avatar.

Updating the Settings Screen Layout
The settings.xml layout file dictates the user interface of the settings screen. You

need to reopen this layout file in the Eclipse layout resource editor and make the fol-

lowing changes:

1. First, find the TextView control called TextView_Nickname in the file. Above

this control and inside the ScrollView control, add a new LinearLayout con-

trol and set its orientation attribute to horizontal. Set the layout_width

and layout_height attributes to fill_parent.

FIGURE 13.2
The settings
screen layout
updates
required for the
avatar feature.

LinearLayout (Horizontal Orientation)

LinearLayout (Vertical Orientation)

TextView (“Nickname:”)

EditText (Nickname Input)

ImageButton
(Avatar)

ptg

220 HOUR 13: Working with Images and the Camera

2. Within the LinearLayout control, add an ImageButton control called

ImageButton_Avatar. Set the layout_width and layout_height attributes to

wrap_content. You need to be able to scale the avatar graphic while preserv-

ing its aspect ratio, so set its adjustViewBounds attribute to true and its

scaleType attribute to fitXY. You will also want to set its maxHeight and

minHeight attributes to a dimension that gives the graphic reasonable bounds

for the settings screen (for example, 75px).

3. Below the ImageButton control, add another LinearLayout control. Set its

orientation attribute to vertical. Set the layout_width and

layout_height attributes to fill_parent. Now move the nickname controls

(the TextView control called TextView_Nickname and the EditText control

called EditText_Nickname) into this layout.

At this point, save the settings.xml layout file. If you rerun the application in the

emulator, the settings screen should now look like Figure 13.3.

FIGURE 13.3
The settings
screen with the
avatar feature.

ptg

Watch
Out!

By the
Way

Working with ImageButton Controls 221

Working with ImageButton Controls
The ImageButton control is a special type of button that displays a Drawable graph-

ic instead of text. Figure 13.3 showed an ImageButton control used to display an

avatar graphic as part of the settings screen.

The ImageButton and Button controls are both derived from the View class, but

they are unrelated to each other otherwise. The Button class is actually a direct sub-

class of TextView (think of it as a line of text with a background graphic that looks

like a button), whereas the ImageButton class is a direct subclass of ImageView.

Any graphics displayed within an ImageButton control should be stored locally on
the handset. Attempting to use remote Uri addresses is not recommended due
to decreased application performance and responsiveness.

Setting the Image of an ImageButton Control
As with an ImageView control, there are several different ways to set the graphic

shown in an ImageButton control, including the following:

. setImageBitmap()—Use this method to set the graphic shown on the

ImageButton control to a valid Bitmap object.

. setImageDrawable()—Use this method to set the graphic shown on the

ImageButton control to a valid Drawable object.

. setImageResource()—Use this method to set the graphic shown on the

ImageButton control to a valid Resource identifier.

. setImageURI()—Use this method to set the graphic shown on the

ImageButton control to a valid Uri address.

In some circumstances, the ImageButton control will cache the graphic it is dis-
playing, and continue to do so even if you use one of the methods to change the
graphic. One workaround for this is to call setImageURI(null) to flush the previ-
ous graphic and then call setImageURI() again with a Uri set to the new graphic
to display the ImageButton control.

Here’s a handy trick for accessing application resources such as Drawable resources,

using a specially constructed Uri address. This trick allows you to use the

setImageURI() method of the ImageButton for both image resources and other

ptg

222 HOUR 13: Working with Images and the Camera

graphics on the handset. Resource URIs can be referenced by resource identifier or by

resource type/name. The Uri address format for the resource identifier method is as

follows:

android.resource://[package]/[res id]

For example, you could use the following Uri to access a Drawable resource called

avatar.png by its resource identifier:

Uri path =
Uri.parse(“android.resource://com.androidbook.triviaquiz13/” +
R.drawable.avatar);

The Uri address format for the resource type/name method is as follows:

android.resource://[package]/[res type]/[res name]

For example, you could use the following Uri to access a Drawable resource called

avatar.png by its resource type/name:

Uri path = Uri.parse(
“android.resource://com.androidbook.triviaquiz13/drawable/avatar”);

When you have a valid Uri for the Drawable resource, you can use it with the

setImageURI() method of an ImageButton control as follows:

ImageButton avatarButton = (ImageButton) findViewById(R.id.ImageButton_Avatar);
avatarButton.setImageURI(path);

Handling ImageButton Events
You handle ImageButton events such as clicks exactly the same way as you would

with any View control—by using click listeners. For the avatar ImageButton control,

you want to handle clicks and long-clicks.

Handling Clicks with setOnClickListener
To listen and handle when a user clicks on the avatar ImageButton control, you

must implement the View.OnClickListener() method:

avatarButton.setOnClickListener(new View.OnClickListener() {
@Override

public void onClick(View v) {
// TODO: Launch the Camera and Save the Photo as the Avatar

}
});

This should look familiar because you’ve already implemented a number of listeners

for Button controls.

ptg

▼

Working with Image Media 223

Handling Long-Clicks with setOnLongClickListener
A long-click is a special type of click available on the Android platform. Basically, a

long-click event is when a user clicks on a control for about one second. This type of

click is handled separately from a regular, “short” click.

To handle long-clicks, you need to implement the View.OnLongClickListener class

and pass it into the ImageButton control’s setOnLongClickListener() method.

OnLongClickListener has one required method you must implement:

onLongClick(). Here is a sample implementation of OnLongClickListener for the

avatar ImageButton control:

avatarButton.setOnLongClickListener(new View.OnLongClickListener() {
@Override

public boolean onLongClick(View v) {
// TODO: Launch Image Picker and Save Image as Avatar

return false;
}

});

The onLongClick() method looks much like the onClick() method of the

OnClickListener class. However, it has a return value, which should be true if

long-click events are handled.

Try It Yourself
Take a moment to try out clicks and long-clicks with an ImageButton control:

1. Navigate to the QuizSettingsActivity.java class file and add a click listen-

er and a long-click listener to the ImageButton_Avatar control.

2. Within the onClick() method of OnClickListener, add a Toast message

that says Short click.

3. Within the onLongClick() method of OnLongClickListener, add a Toast

message that says Long click.

4. Save your work and re-launch the application. Click the avatar ImageButton

control on the settings screen and note when click and long-click events occur.

Working with Image Media
Now that you have the avatar ImageButton control configured, you can work on

handling the user click actions. When the user clicks the avatar button, you want to

launch the appropriate activity (via Intent) and then handle the resulting image

and set it as an avatar.

▲

ptg

224 HOUR 13: Working with Images and the Camera

For now, you can save the avatar image locally on the handset. You also need to

add a new preference to the application SharedPreferences. You begin by defining

this new preference in the QuizActivity.java class, as follows:

public static final String GAME_PREFERENCES_AVATAR = “Avatar”;

Launching Activities and Handling Results
If you think back to Hour 3, “Building Android Applications,” when we talked about

application life cycle, you will recall that there are several ways to launch an activi-

ty. Specifically, there is a method called startActivityForResult() that allows

you to launch an activity using an intent and then handle the result by implement-

ing the calling activity class’s onActivityResult() method.

The startActivityForResult() method takes two parameters: the intent to launch

and a developer-defined request code. In this case, the calling activity is

QuizSettingsActivity. You have two instances in which you want to start a new

activity. The first instance is when the user clicks on the ImageButton control to start

the camera capture activity. The second instance is when the user long-clicks on the

ImageButton control to start the image gallery. Therefore, you need to define two

request codes within QuizSettingsActivity:

static final int TAKE_AVATAR_CAMERA_REQUEST = 1;
static final int TAKE_AVATAR_GALLERY_REQUEST = 2;

We will talk more about the startActivityForResult() method in a moment, but

for now, let’s focus on how the QuizSettingsActivity handles the results returned

when the launched activity completes. You handle the result returned by the activity

by implementing the onActivityResult() method of the QuizSettingsActivity

class. Because you have more than one request code, you add a switch statement

with two cases, one for camera results and one for image picker results:

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
switch(requestCode) {
case TAKE_AVATAR_CAMERA_REQUEST:

if (resultCode == Activity.RESULT_CANCELED) {
// Avatar camera mode was canceled.

} else if (resultCode == Activity.RESULT_OK) {
// TODO: HANDLE PHOTO TAKEN

}
break;

case TAKE_AVATAR_GALLERY_REQUEST:
if (resultCode == Activity.RESULT_CANCELED) {

// Avatar gallery request mode was canceled.
} else if (resultCode == Activity.RESULT_OK) {

// TODO: HANDLE IMAGE CHOSEN
}
break;

}
}

ptg

Did you
Know?

Working with Image Media 225

Note that the user might launch an activity and then cancel it. In this case, the

resultCode of the onActivityResult() method is Activity.RESULT_CANCELED.

However, when the resultCode parameter is Activity.RESULT_OK, you should

have a valid result to handle.

Because both cases result in a graphic you want to save as an application avatar,

you can create a helper method called saveAvatar(). This method can take a

bitmap, save it as a local file, and use it within the Been There, Done That! applica-

tion. The pseudo-code for the saveAvatar() method looks like this:

private void saveAvatar(Bitmap avatar)
{

// TODO: Save the Bitmap as a local file called avatar.jpg
// TODO: Determine the Uri to the local avatar.jpg file
// TODO: Save the Uri path as a String preference
// TODO: Update the ImageButton with the new image

}

Working with the Camera
There are many ways to incorporate camera hardware into your application. You

can build camera support directly into your application, or you can integrate

existing camera support functionality into your application by using the Intent

mechanism.

For more fine-tuned control over the handset camera hardware, you can use the
android.hardware.Camera class to connect to the Camera service on the device,
configure settings, and take photos and video. Your application will require the
android.permission.CAMERA permission to access the camera hardware on the
handset.

By far, the simplest way to include photo-taking abilities in an application is by

launching the ACTION_IMAGE_CAPTURE intent. For example, you could add the fol-

lowing code to the onClick() method of the avatar ImageButton control’s

OnClickListener:

Intent pictureIntent = new Intent(
android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

startActivityForResult(pictureIntent, TAKE_AVATAR_CAMERA_REQUEST);

There is no camera available on the Android emulator. Instead, a mock camera

screen is shown, and a fixed graphic is saved whenever the user chooses to take a

picture. This is helpful for testing camera functionality using the Android emulator.

When you run the application and click the avatar ImageButton control, the emu-

lator screen should look something like Figure 13.4.

ptg

Did you
Know?

226 HOUR 13: Working with Images and the Camera

When launching a “remote” activity—that is, an activity that is not necessarily
part of your application—you are effectively sending out an intent that says, “I
want to do this. Who can do it for me?” A number of other applications on the
handset may have the ability to handle this operation. The Android operating sys-
tem attempts to match the most appropriate activity to handle the request.
However, if you want the user to be shown a list of applicable activities (or applica-
tions) to handle the request, simply wrap your intent within another intent called
ACTION_CHOOSER. You often see this mechanism used with common applications
such as messaging applications (for example, “Which application do you want to
use to send this message?”). You can wrap an intent within a chooser by using
the createChooser() method, like this:

Intent.createChooser(innerIntent,
“Choose which application to handle this”);

Although most handsets have only one image-capturing application, as a develop-
er, you are better off not making assumptions of this sort.

The ACTION_IMAGE_CAPTURE intent action causes the camera application to launch,

allows the user to take a photograph, and returns the photo. By default, a small

bitmap is returned, and it is suitable for your avatar. Within a specific case

statement of the onActivityResult() method for the request code

FIGURE 13.4
Taking a photo-
graph using the
camera applica-
tion in the
Android emulator.

ptg

Working with Image Media 227

TAKE_AVATAR_CAMERA_REQUEST, you can retrieve the bitmap by inspecting the

Intent parameter called data, as follows:

Bitmap cameraPic = (Bitmap) data.getExtras().get(“data”);

You can then pass the bitmap graphic into your helper method saveAvatar().

Working with the Gallery
Android has a standard intent action called ACTION_PICK that allows the user to

choose from a set. This type of intent is often used in conjunction with a URI, but it

need not be. This kind of intent can also be used to create a set of all data of a given

MIME type on the handset and allow the user to choose an item from the set.

For example, you can create an intent to use within the onLongClick() method to

display all images to the user as follows:

Intent pickPhoto = new Intent(Intent.ACTION_PICK);
pickPhoto.setType(“image/*”);
startActivityForResult(pickPhoto, TAKE_AVATAR_GALLERY_REQUEST);

When you run the application and long-click the avatar ImageButton control, a

gallery of images available on the device is displayed (see Figure 13.5).

FIGURE 13.5
Choosing an
image from the
gallery on the
Android emulator.

ptg

Watch
Out!

228 HOUR 13: Working with Images and the Camera

The ACTION_PICK Intent action causes a gallery of all images stored on the hand-

set to launch, allows the user to choose one image, and returns a URI address to the

image’s location. Therefore, within a specific case statement of the

onActivityResult() method for the request code TAKE_AVATAR_GALLERY_REQUEST,

you can retrieve the URI by inspecting the Intent parameter called data, as follows:

Uri photoUri = data.getData();

Then, to convert the Uri to a valid Bitmap object, you can use the following

method:

Bitmap galleryPic = Media.getBitmap(getContentResolver(), photoUri);

You can then pass the bitmap into your helper method called saveAvatar().

Working with Bitmaps
You now have two methods of retrieving a bitmap graphic to save as the applica-

tion avatar. You can use the Bitmap class (android.graphics.Bitmap) to create,

manipulate, and save graphics on the device.

The Bitmap class encapsulates various bitmap-style graphics formats, including
PNG and JPG. Do not confuse this with the bitmap file format (image.bmp). You
use the Bitmap class to create and manipulate PNG and JPG graphics on the
Android handset.

Saving Bitmap Graphics
You can use the compress() method of the Bitmap class to save a bitmap in various

formats. For example, to save the avatar bitmap to a private application JPG file,

you could use the following code:

String strAvatarFilename = “avatar.jpg”;
avatar.compress(CompressFormat.JPEG,

100, openFileOutput(strAvatarFilename, MODE_PRIVATE));

You can determine the URI address of a file by using the fromFile() method of the

Uri class. For example, to determine the URI for the avatar graphics file you just

saved using the compress() method, you could use the following:

Uri imageUri = Uri.fromFile(new File(getFilesDir(), strAvatarFilename));

ptg

Watch
Out!

Working with Bitmaps 229

After you have saved the avatar to a file and generated the appropriate URI, you

can update the ImageButton control contents with the new image. Now, if you run

the application and choose an avatar (via the camera or the gallery), the

ImageButton control contents will be updated with the appropriate graphic, as

shown in Figure 13.6.

FIGURE 13.6
The Been There,
Done That! set-
tings screen
with a custom
avatar.

Scaling Bitmap Graphics
You can use the createScaledBitmap() method of the Bitmap class to generate

thumbnails and such.

Make sure to calculate the destination height and width appropriately to retain
the original bitmap image’s aspect ratio. Otherwise, the scaled graphic will be
stretched and shrunk in odd ways, which lessens its appeal.

Generating Bitmap Graphics from Various Sources
You can use the BitmapFactory class (android.graphics.BitmapFactory) to

decode bitmap objects from various sources, including files, byte arrays, streams,

and resources.

ptg

230 HOUR 13: Working with Images and the Camera

Performing Bitmap Image Transformations
You can perform various image transformations, such as rotation operations, on

bitmap objects by using the Matrix class (android.graphics.Matrix). This class

manages a 3×3 image matrix that can be used for image translations.

Summary
In this hour, you implemented a new avatar feature on the Been There, Done That!

settings screen. The user can set an avatar by taking a picture with the built-in cam-

era or by choosing an existing image from the device. You learned how to launch

an activity and retrieve its results by using the startActivityForResult() and

onActivityResult() methods. Finally, you learned about some of the graphics

classes available in the Android SDK.

Q&A
Q. By default, the ACTION_IMAGE_CAPTURE intent returns a small bitmap graphic

of the photo taken by the camera. However, the full-size graphic captured by
the camera is much larger. Can I access this photograph data?

A. You can control the data returned by camera application by supplying some

extra data (specifically, the EXTRA_OUTPUT field) to the intent.

Q. How can I maintain aspect ratio when scaling a Bitmap graphic?

A. To maintain the aspect ratio of a graphic, simply scale each axis (x and y) by

the same percentage. Don’t forget that if you apply scaling to all graphics,

some may be down-scaled while others may be up-scaled, using the same

code.

ptg

231Workshop

Workshop

Quiz
1. Activity results handled by the onActivityResult() method are differentiat-

ed from one another using which parameter?

A. requestCode

B. resultCode

C. data

2. True or False: The ImageButton control is a subclass of the Button control.

3. True or False: The Bitmap class only creates traditional bitmap graphics with

the .bmp extension.

Answers
1. A. The developer-defined requestCode is used to determine which activity

(started with the startActivityForResult() method) is returning a result.

resultCode provides information about that activity, such as whether it com-

pleted successfully or was canceled by the user.

2. False. The ImageButton control is actually a subclass of ImageView. However,

a Button control behaves in a very similar fashion to an ImageButton control

because they are both derived from the View class.

3. False. The Bitmap class encapsulates all bitmap-style graphics formats—specif-

ically PNG (recommended) and JPG (supported).

Exercises
1. Use the Bitmap class to modify an avatar in some way before saving it to the

application file. For example, use the Matrix class to invert all the colors in

the graphic (inversion).

2. Use the createScaledBitmap() method of the Bitmap class to generate a

scaled version (thumbnail) of a avatar graphic.

ptg

This page intentionally left blank

ptg

HOUR 14

Adding Support for
Location-Based Services

What You’ll Learn in This Hour:
. Designing the favorite place feature

. Using location-based services

. Using geocoding services

. Working with maps

In this hour, you add a new feature to the Been There, Done That! application—the ability

for the user to set his or her favorite place in the world from the settings screen. The user

can set this information in two ways: by using the current location provided by location-

based services (LBS) on the handset or by supplying a place name that can be resolved

into the corresponding GPS coordinates using the geocoding functionality provided in the

Android SDK.

Designing the Favorite Place Feature
Mobile users are always on the go, and mobile applications that include integration with

LBS have become incredibly popular. The Android platform makes it simple to add LBS

support to applications. The degree to which LBS support is incorporated into an applica-

tion is a design choice for the developer, and there are a number of options.

Because the Been There, Done That! application is primarily a game, you want to include

some of the most common LBS features. You do this by adding a favorite place feature to

the settings screen. As you build this feature, you will learn about some of the other

options available for building more powerful LBS applications.

ptg

234 HOUR 14: Adding Support for Location-Based Services

On the settings screen, the user will be able to choose to label and save the handset’s

last known location as his or her favorite place or type in a place name, such as an

address, a city, or a landmark (for example, New York City, Iceland, Yellowstone

National Park, 90210). The application then uses any geocoding service providers

available to resolve these locations into the appropriate GPS coordinates.

To incorporate this kind of feature into the Been There, Done That! Settings screen,

you need to modify the screen design slightly to include the new favorite place fea-

ture. Figure 14.1 shows a rough design of how the favorite place feature will be

incorporated into the settings screen.

FIGURE 14.1
Rough design of
the favorite
place feature.

Settings

AVATAR
(Picture)

NICKNAME:
(20 characters max)

EMAIL:
(Will be used as unique account id)

PASSWORD:
(Password requires entering twice to verify)

BIRTH DATE:
(DOB requires entering Month, Day, Year)

GENDER:
(Male, Female, or Prefer Not To Say)

FAVORITE PLACE:
(Current Location or Search By Name)

Determining Favorite Place Feature Layout
Updates
Recall that the fields displayed on the settings screen are encapsulated within a

ScrollView control. This makes it easy to add a new setting at the bottom of the

screen. The favorite place feature will function much like the date of birth and pass-

word settings.

ptg

Designing the Favorite Place Feature 235

To incorporate the favorite place design changes into the /res/layout/settings.

xml layout file, you need to add a new region to the settings screen below the gender

Spinner control.

You begin by adding a TextView control to display the label of the new setting.

Then you add an inner LinearLayout control with a Button control to launch the

dialog and a TextView control to display the resulting Favorite Place name.

Figure 14.2 shows the layout updates required by the favorite place feature.

FIGURE 14.2
The settings
screen layout
updates
required for the
favorite place
feature.

LinearLayout (Vertical)

LinearLayout (Horizontal)

TextView

(“Favorite Place:”)

(Other Settings Like Gender Spinner)

(Launch Place Picker
Dialog)

(Show Place Name
String)

Button TextView

Designing the Favorite Place Dialog
You need to give some thought to the custom favorite place picker dialog. Again,

you will build a custom dialog from the AlertDialog class.

The favorite place setting will be stored internally in three parts:

. The name of the location (a String value)

. The latitude of the location (a float value)

. The longitude of the location (a float value)

ptg

By the
Way

236 HOUR 14: Adding Support for Location-Based Services

Technically, you could also retrieve and store the altitude of the location, but
with most map applications these days, people want a bird’s eye view on a two-
dimensional space.

To keep the dialog simple, you can offer the user two choices: use the last known

location (provided that the handset GPS provider exists and has this information) or

enter a string into an EditText control, which the geocoding functionality available

in the Android SDK translates into GPS coordinates. When you have latitude and

longitude information on the location, you can include the ability to launch into

the Maps application, if it is available on the device. Figure 14.3 shows a rough

design of the favorite place dialog.

FIGURE 14.3
Rough design of
the favorite
place dialog.

COORDINATES:

Map It!
FAVORITE PLACE:

(“Pick a Place”)

Dialog Title

(Place name resolved when user
leaves focus of control)

(Show resolved GPS coordinates for location)

CancelOk

Implementing the Favorite Place Dialog Layout
You need to create a new layout file where you can store the favorite place dialog

layout. For this purpose, you add a new layout resource called

/res/layout/fav_place_dialog.xml to the project.

This layout is pretty straightforward. All custom dialog controls are encapsulated

within a vertically oriented LinearLayout control. First, you have a TextView con-

trol to display the label for choosing a favorite place. Next, you need to display the

ptg

Implementing the Framework for the Favorite Place Feature 237

EditText input control for the user to type the place name, next to a Button con-

trol to allow the user to launch the Map application. You can easily organize the

EditText and the Button controls side-by-side, using RelativeLayout. Finally, you

include two TextView controls: one to display the label for the GPS coordinates and

one to show the actual GPS coordinate data (which is read-only in the Been There,

Done That! application).

Figure 14.4 shows the layout for the Favorite Place picker dialog.

FIGURE 14.4
The favorite
place dialog lay-
out.

LinearLayout (Vertical Orientation)

TextView (“Favorite Place:”)

RelativeLayout

EditText (Favorite Place Input)

TextView (“Coordinates:”)

Button
(Launch Map)

TextView (Show GPS Coordinates)

Implementing the Framework for the
Favorite Place Feature
Before you can turn your attention to the more interesting aspects of adding LBS

support to the Been There, Done That! application, you need to leverage many of

the skills discussed in previous hours to develop the framework for the favorite place

feature. This is a great way to exercise some of your new skills. To implement the

feature, follow these steps:

1. Add any new String, Dimension, Color, or Drawable resources needed to

support the layouts used by the feature.

2. Update the /res/layout/settings.xml layout file to add the new region at

the bottom of the settings screen for launching the favorite place dialog and

displaying the favorite location, if one is set, as shown in Figure 14.5.

ptg

238 HOUR 14: Adding Support for Location-Based Services

3. Add the /res/layout/fav_place_dialog.xml layout file to the project and

implement the TextView, EditText, and Button controls the dialog requires,

as shown in Figure 14.6.

4. Define three new game preference String values in the QuizActivity class.

These preferences will be used by the application’s SharedPreferences to

store the user’s favorite location name (String) as well as that location’s lati-

tude (float) and longitude (float).

5. Update the QuizSettingsActivity class to include a new dialog. First, define

a dialog identifier (for example, PLACE_DIALOG_ID) in the class. Then update

the onCreateDialog() and onPrepareDialog() methods of the class to build,

initialize, and manage the new favorite place picker dialog.

FIGURE 14.5
The settings
screen with the
favorite place
feature.

ptg

Implementing the Framework for the Favorite Place Feature 239

Because each of these tasks has been covered in a previous hour, we do not go into

too much detail here. However, here are a couple hints for getting things up and

running:

. Add a helper method called initFavoritePlacePicker() to display the

favorite place name (if it exists) and handle Button clicks that launch the

favorite place picker dialog. This method should closely resemble the

initPasswordChooser() and initDatePicker() methods.

. Build the new favorite place picker dialog much like the password dialog you

implemented earlier. One of the key differences between this new dialog and

the password dialog is that the new dialog contains a Button control for

launching the Map application.

. Build the favorite place picker Dialog one step at a time. Begin by having the

Dialog save the text inputted as the favorite place name. Next, to save some

mock latitude and longitude information, along with the place name. When

this is all working, add a View.OnClickListener() method for the map

Button control and have it display a Toast message that says something like

Map Button Clicked.

FIGURE 14.6
The favorite
place picker
dialog.

ptg

Watch
Out!

By the
Way

240 HOUR 14: Adding Support for Location-Based Services

The full implementation of these hints is available in the code provided at the
book’s website.

After you have implemented the framework to support the favorite place feature,

you can turn your attention to more interesting matters, such as calculating the

user’s last known location and mapping GPS coordinates on a map.

Using Location-Based Services
Developers who enable LBS support in applications need to be aware of a number of

issues. First and foremost, a user’s location is personal information and subject to

privacy concerns. Second, using LBS on a handset takes a toll on the device in terms

of network data usage and battery life.

The Android system addresses these issues, in part, through permissions. That said,

some of the burden of managing the impact of LBS features on the user and the

user’s device does fall on the developer. Therefore, here are some guidelines for using

services such as LBS:

. Enable LBS features only when they are needed and disable them as soon as

they are no longer required.

. Inform the user when collecting and using sensitive data, as appropriate.

Many users consider their present or past locations to be sensitive.

. Allow the user to configure and disable features that might adversely affect

their experience when using your application. For example, develop a “roam-

ing” mode for your application to allow the user to enjoy your application

without incurring huge fees.

. Handle events such as low-battery warnings and adjust how your application

runs accordingly.

. Consider including a custom privacy message as part of your application’s

usage terms, to explain how any data collected from the user, including the

user’s name and location information, will and will not be used.

Not every Android device will have LBS hardware, so you should not assume that
all devices will be able to provide location information.

ptg

Did you
Know?

Using Location-Based Services 241

A number of LBS features are available as part of the Android SDK, but some of the

most exciting features are actually part of the Google APIs add-on. This add-on

allows you to incorporate powerful features such as Google Maps functionality

directly into Android applications. Developers using the Google APIs add-on must

register for a special Google developer account and use a special API key.

Enabling Location Testing on the Emulator
Many LBS features are available to developers without the special Google developer

accounts and API keys. For example, you need a special API key to use Google Maps

within an application, but you do not need any special permission to launch an

Intent object to view a location that can be matched to any Map applications on

the device.

Creating an AVD with Google APIs and Applications
You may have noticed that the basic Android installation (the target platform cho-

sen when creating an AVD for use with the emulator) does not include the Maps

application. To use the Android Maps application (developed by Google) with the

Emulator, you need to create an Android AVD with the Google APIs target platform.

Because you want to add some mapping features to the Been There, Done That!

application, you need to create a new AVD for this target platform.

Configuring the Location of the Emulator
Unfortunately, the Android emulator just pretends to be a real device—that is, it

doesn’t actually have any hardware internals, so it cannot, for example, determine

its current location via satellites. Instead, you have to seed the location information

to the specific emulator instance. The easiest way to configure your emulator is to

use the DDMS perspective in Eclipse. You need the latitude and longitude of the

location you want the emulator to use.

You can use Google Maps to determine GPS coordinates. To find a specific set of
coordinates, go to http://maps.google.com and navigate to the location you
desire. Center the map on the location by right-clicking the map and then choose
the option to link to the map (usually in the top right corner of the screen, above
the map). Copy the link URL—which has the GPS coordinates as part of the query
string—to a text file. Find the last ll query variable, which should represent the
latitude and longitude of the location. For example, the west edge of Yellowstone
Lake in Yellowstone National Park has the ll value 44.427896,-110.585632. The
ll value 44.427896,-110.585632 stands for latitude 44.427896 and longitude
-110.585632. You can double-check these coordinates by pasting them into
Google Maps again and seeing if the map pinpoints the same place location
again.

http://maps.google.com

ptg

242 HOUR 14: Adding Support for Location-Based Services

To seed the emulator with a latitude and longitude, follow these steps:

1. Launch the emulator. If you’re running an application, click the Home

button.

2. Launch the Maps application.

3. Click the Menu button.

4. Choose the My Location menu item (see Figure 14.7).

FIGURE 14.7
The Maps applica-
tion in the
Android emulator.

5. Open Eclipse and click on the DDMS perspective.

6. Choose the emulator instance you want to send a location fix to.

7. In the Emulator Control pane, scroll down to the location control.

8. Enter the longitude and latitude of your desired location. Try the coordinates

for Yellowstone National Park: latitude 44.427896 and longitude -110.585632

(see Figure 14.8).

9. Click Send.

ptg

Using Location-Based Services 243

Back in the emulator, you’ll notice that the Google map is now showing the location

you seeded. Your screen should now display your location as Yellowstone National

Park, as shown in Figure 14.9.

FIGURE 14.8
Setting the
location of the
emulator to
Yellowstone
National Park
with DDMS.

FIGURE 14.9
Setting the loca-
tion of the emu-
lator to
Yellowstone
National Park.

Did you
Know?You can also use the emulator console command-line tool to send a location fix

with the geo fix command.

ptg

244 HOUR 14: Adding Support for Location-Based Services

Accessing the Location-Based Services
To access the LBS service on an Android device, you must have the appropriate per-

missions. Location-based services cannot be used by an Android application unless

it is granted the appropriate <uses-permission> settings configured in the Android

manifest file.

The most common permissions used by applications leveraging LBS are

android.permission.ACCESS_FINE_LOCATION and android.permission.ACCESS_

COARSE_LOCATION. To use the GPS provider, you use

android.permission.ACCESS_FINE_LOCATION.

When you have registered the appropriate permission, you can access the

LocationManager class by using the getSystemService() method, as follows:

LocationManager locMgr =
(LocationManager) getSystemService(LOCATION_SERVICE);

The LocationManager class allows you to access the LBS functionality available on

the device.

Working with Providers
There may be any number of LBS providers for a device. You can get a list of all

providers by calling the getProviders() method of the LocationManager class. You

can limit the providers returned to only those that are enabled, or you can provide

criteria for returning only providers with certain features (such as fine accuracy).

You can also use the getBestProvider() method to return the most appropriate

provider for a given set of criteria.

Each of these provider retrieval methods returns a list of names of location

providers. The best location provider for given set of criteria can be returned by

name, using the getProvider() method. You can use the LocationProvider class

to inspect a given provider and see what features it has, such as whether it supports

altitude, bearing, and speed information and whether using it may incur a mone-

tary cost to the user.

ptg

Watch
Out!

Using Location-Based Services 245

Getting the Last Known Location
You can retrieve the last known location of the device (as calculated by a specific

provider) by using the getLastKnownLocation() method of the LocationManager

class. This location may not be current, but it often gives you a good starting point,

and this data is returned quickly, whereas trying to get a current satellite fix can

often take quite some time.

You need not start the provider to get the last known location; you simply need to

request its last known result. The getLastKnownLocation() method returns a

Location object:

Location recentLoc =
locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);

The Location object can contain a number of interesting pieces of information

regarding a location. The information available depends on the abilities of the LBS

provider. For example, most providers return latitude and longitude, but not all can

calculate altitude. You use the getLatitude() and getLongitude() methods to

retrieve the coordinates from the Location object.

Receiving Location Updates
When you need more current information and want to know when the location

changes, you can register for periodic location updates by using the

requestLocationUpdates() method of the LocationManager class. This method

allows an activity to listen to events from a specific provider (for example, the best

provider given your criteria). This frequency of notifications can be adjusted by spec-

ifying the minimum time (in milliseconds) and the minimum distance interval (in

meters) between updates.

To receive a notification when the location changes, you should have the interested

activity implement the LocationListener (android.location.LocationListener)

interface. This interface has a number of helpful callback methods, which allow the

activity to react when the provider is enabled and disabled, when its status changes,

and when the location changes.

Resolving the current location can take some time. Therefore, you’ll want to con-
sider putting most LBS calls in a worker thread separate from the main UI thread
(or writing a background service to support your application). We will discuss
threading later in this book.

ptg

Watch
Out!

246 HOUR 14: Adding Support for Location-Based Services

Using Geocoding Services
Geocoding is the process of translating a description of a location into GPS coordi-

nates (latitude, longitude, and sometimes altitude). Geocoding enables you to enter

a place name such as Eiffel Tower into Google Maps (http://maps.google.com) and

get the appropriate spot on the map. Many geocoding services also have reverse-

geocoding abilities, which can translate raw coordinates into some form of address

(usually a partial address).

Android devices may or may not have geocoding services available, and geocoding

obviously requires a back-end service, and the device must have network connectivi-

ty to be able to contact this back-end service. Different geocoding services support

different types of descriptions, but the following are some of the most common ones:

. Names of towns, states, and countries

. Various forms of postal-style addresses (full and partial)

. Postal codes

. Airport codes (for example, LAX, LHR, JFK)

. Famous landmarks

Of course, most geocoding services also allow input of raw coordinates (latitude and

longitude) as well. Geocoding services are often localized.

Geocoded addresses are often ambiguous, so a geocoding service may return multi-

ple records. For example, if you were to try to resolve the address “Springfield,” you

would likely get quite a few results because there is a town called Springfield in

about 35 states in the United States, and there are even more Springfields abroad.

You might also get results for places called East Springfield or Springfield by the Sea,

for example. For the best results, choose the geocoding address that is the most

specific (for example, use Springfield’s zip code instead of its name to resolve the

coordinates).

Like other network operations, geocoding services are blocking operations. This
means that you’ll want to put any calls to geocoding services in a thread separate
from the main UI thread.

http://maps.google.com

ptg

Using Geocoding Services 247

Using Geocoding Services with Android
The Android SDK includes the Geocoder (android.location.Geocoder) class to

facilitate interaction with the handset’s geocoding and reverse-geocoding services, if

they are present. Instantiating a Geocoder is simple:

Geocoder coder = new Geocoder(getApplicationContext());

When you have a valid Geocoder, you can begin to use any geocoding or reverse-

geocoding services available on the device.

Geocoding: Translating Addresses into Coordinates
You can use the Geocoder class getFromLocationName()method to resolve a loca-

tion into coordinates. This method takes two parameters: the string containing the

location information and the number of results you want returned. For example, the

following code looks up Springfield and limits the number of results to three:

String strLocation = “Springfield”;
List<Address> geocodeResults =

coder.getFromLocationName(strLocation, 1);

You can iterate through the Geocoder results by using an iterator:

Iterator<Address> locations = geocodeResults.iterator();
while (locations.hasNext()) {

Address loc = locations.next();
double lat = loc.getLatitude();
double lon = loc.getLongitude();
// TODO: Do something with these coordinates

}

Each Address object returned contains information about the location. You can use

the getLatitude() and getLongitude() methods of the Address class to access the

location’s coordinates.

You can also use the getFromLocationName() method to limit the returned address

results to a certain range.

Reverse-Geocoding: Translating Coordinates into Addresses
You can use the Geocoder class’s getFromLocation() method to translate raw lati-

tude and longitude coordinates into address information. Again, you pass in the

coordinates and the number of results to be returned.

ptg

248 HOUR 14: Adding Support for Location-Based Services

Working with Maps
Most map features of Android are provided with the special Google API add-ons. For

example, you can use the MapView control in your layout files to tightly integrate

Google Maps features into applications. You can also integrate with existing Maps

applications available on the handset by way of the intent mechanism.

Launching a Map Application by Using an Intent
Location applications such as the Maps application handle the ACTION_VIEW intent

when supplied with a URI with geographic coordinates. This URI has a special

format.

When you have determined the latitude and longitude of a location, you can

launch the Maps application (or any application that handles this type of data),

using the following URI format string:

geo:lat,lon

Here’s an example:

String geoURI = String.format(“geo:%f,%f”, lat, lon);

This special URI can also include a zoom level, which is a number between 1 and

23, where zoom level 1 shows the whole planet, and zoom level 23 zooms in all the

way (often way too far for map resolution). To include a zoom level, use the follow-

ing URI format string:

geo:lat,lon?z=level

Here’s an example:

String geoURI = String.format(“geo:%f,%f?z=10”, lat, lon);

When you have a properly formatted URI, you can use the parse() method to gen-

erate the Uri and use it with the ACTION_VIEW intent, as follows:

Uri geo = Uri.parse(geoURI);
Intent geoMap = new Intent(Intent.ACTION_VIEW, geo);
startActivity(geoMap);

ptg

Working with Maps 249

If there are applications on the device that handle geo-format URIs, the appropriate

application (for example, the Google Maps application) will launch as the new fore-

ground activity and show the location. After the user has looked at the map, he or

she can return to the calling application by pressing the Back button.

By using the Geocoder class and an intent to launch the Google Maps application,

you can complete the favorite place picker dialog, including the Map It! Button con-

trol, as shown in Figure 14.10.

FIGURE 14.10
The favorite place
picker dialog,
launching the
Google Maps
application.

If you press the Menu button in the Maps application, you can change the map

mode to satellite and zoom in to see the Great Pyramids, as well as all the tour

buses and the Sphinx, as shown in Figure 14.11.

ptg

250 HOUR 14: Adding Support for Location-Based Services

Working with Third-Party Services and
Applications
The built-in LBS features of the Android SDK are located in the android.location

package. Basic LBS functionality, such as getting a location fix from satellite trian-

gulation, is built into the Android SDK. However, many of the most interesting and

powerful mapping and LBS-related features on Android phones are not actually

built into the basic Android SDK but are part of the Google APIs that ship along

with the Android SDK.

Working with Google APIs and Advanced Map Features
Map features can be built into applications using the Google API add-on. The

following are some of the features available in the com.google.android.maps

package:

. A MapView control for displaying an interactive map within a layout

. A MapActivity class to simplify MapView controls on a screen

FIGURE 14.11
Using the
Google Maps
application to
zoom in satel-
lite view.

ptg

251Q&A

. The GeoPoint class, which encapsulates position information

. Classes to support map overlays (drawing on top of the map)

. Classes for working with position projections and handling other common

LBS-related tasks

For some Google APIs and features, you must sign up for a special account, agree to

further terms of service, and receive an API key to use those services. These features

are exciting and powerful, but they are unfortunately beyond the scope of this book.

Once you have mastered the basics of Android LBS support, consider consulting a

more advanced Android manual, such as our book Android Wireless Application

Development (Addison-Wesley Developer’s Library), which contains extensive exam-

ples using the Google APIs. You can read more about these classes at the Google

APIs Add-On Reference website: http://code.google.com/android/add-ons/google-

apis/reference/index.html.

Summary
In this hour, you implemented a new favorite place feature on the Been There, Done

That! settings screen. In this hour, you learned how to use built-in location-based

services to determine the current location, as well as how to translate addresses into

geographical coordinates. You also learned how to launch the Maps application and

view a specific location. Finally, you learned about some of the advanced features of

the location-based services functionality available within the Android SDK.

Q&A
Q. I want to use the MapView control. Where do I get a Google API key?

A. Start at the Google API add-ons website, which lists all the steps you need to

follow to register for the key: http://code.google.com/android/add-ons/google-

apis/mapkey.html. As part of this process, you need to set up a Google

account if you do not have one already.

http://code.google.com/android/add-ons/google-apis/reference/index.html
http://code.google.com/android/add-ons/google-apis/reference/index.html
http://code.google.com/android/add-ons/google-apis/mapkey.html
http://code.google.com/android/add-ons/google-apis/mapkey.html

ptg

252 HOUR 14: Adding Support for Location-Based Services

Q. How do I design an application that needs more robust location information,
such as an update when the location changes?

A. There are a number of ways to design LBS applications. For starters, the

LocationManager object allows you to register an activity for periodic updates

of location information, including the ability to launch an intent when a spe-

cific location event occurs. Make sure you move all LBS tasks off the main UI

thread, as they are time-intensive; use a worker thread, the AsyncTask class,

or a background process instead. Also, only listen for location events when

you must, to avoid performance issues on the device.

Workshop

Quiz
1. Developers need to consider which of the following when working with

location-based services?

A. The user’s privacy

B. The user’s phone bill

C. The device’s battery life

D. The accuracy and validity of the information provided by LBS and geocod-

ing services

E. The time it takes for location information to be resolved

F. All of the above

2. True or False: In addition to the Button controls provided with AlertDialog,

other Button controls can be used as part of a custom layout.

3. Which services are provided as part of the Android SDK?

A. Location-based services

B. Geocoding and reverse-geocoding services

C. Mapping services

4. True or False: Because the emulator is not the real device, there is no way to

use LBS on the emulator.

ptg

253Workshop

Answers
1. F. Developers need to take all these concerns into account when developing

LBS-enabled applications.

2. True. Button controls included as part of a custom layout for a dialog are

acceptable. You should provide the appropriate View.OnClickListener click

handlers as part of the dialog-building process. Note that this is slightly differ-

ent from the DialogInterface.OnClickListener click handlers required to

handle the basic three dialog buttons available with AlertDialog.

3. A and B. The Android SDK includes support for LBS, geocoding, and reverse-

geocoding. The services provided by specific devices vary. Mapping services are

provided as part of the Google API add-on, not as part of the stock Android

SDK.

4. False. The emulator provides support for LBS services (for some services, the

Google add-on is needed), and DDMS can be used to change location.

Exercises
1. Modify the favorite place picker dialog to take GPS latitude and longitude

data that the user inputs.

2. Modify the favorite place picker dialog to allow the user to configure the zoom

level of the map shown.

3. Modify the Been There, Done That! application to save altitude information

along with the latitude and longitude settings.

ptg

This page intentionally left blank

ptg

HOUR 15

Adding Network Support

What You’ll Learn in This Hour:
. Designing network applications
. Running tasks asynchronously
. Working with progress bars
. Downloading data from an application server

In the next two hours, you enable the Been There, Done That! application to handle two-

way network communication. In this hour, you concentrate your attention on download-

ing data from the Internet. Specifically, you modify the application to retrieve batches of

quiz questions and live score data from a remote application server.

Designing Network Applications
Although mobile devices have come a long way in terms of computing speed and data

storage, servers can still provide valuable processing power for backing up data or for pro-

viding ease of data portability between devices or access to portions of larger datasets that

can’t be retained on the local device. Luckily, mobile devices have also come a long way

in terms of their ability to connect to networks and the Internet. Most Android devices can

connect to the Internet in multiple ways, including through 3G (and beyond) networks or

Wi-Fi connections. Android applications can use many of the most popular Internet proto-

cols, including HTTP, HTTPS, TCP/IP, and raw sockets.

So far, you have supplied only mock XML data in the Been There, Done That! application.

Now it’s time to modify the application to contact a remote application server to get live

data. To do this, you need to learn about the networking features available on the

Android platform, as well as how to offload tasks from the main UI thread and execute

them asynchronously.

ptg

256 HOUR 15: Adding Network Support

Two classes of the Been There, Done That! application need to download informa-

tion from an application:

. QuizScoresActivity—This class needs to download score information.

. QuizGameActivity—This class needs to download each batch of trivia ques-

tions.

To enable the Been There, Done That! application to handle live data, you need to

access an application server as well as add networking functionality to the client

Android application.

By the
Way

The full implementation of the networking code provided in this hour is available
on the book’s website, http://www.informit.com/title/9780321673350.

Working with an Application Server
Network-enabled applications often rely on an application server. The application

server provides centralized data storage (a database) and high-performance process-

ing power. Using a centralized server also allows the developer to develop a single

server side with multiple client applications. For example, you could easily write

iPhone, BlackBerry, and web versions of the Been There, Done That! application that

use the same back-end application server. Scores and friends could then be shared

across multiple client environments easily.

There are many ways to develop an application server. This implementation lever-

ages a very simple, scalable server that uses Google App Engine (http://code.google.

com/appengine/) with Java and servlets. The Google App Engine technology stores

information using a schemaless object datastore, with a query engine and support

for atomic transactions. While the implementation details of the application server

are beyond the scope of this book, it can be helpful to understand how it was

designed.

Think of this example’s application server as a black box with the following

attributes:

. The application server is always on and available for users.

. The application server is remotely accessed via HTTP.

. The application server stores data, such as player settings, scores, and trivia

questions.

http://www.informit.com/title/9780321673350
http://code.google.com/appengine/
http://code.google.com/appengine/

ptg

By the
Way

Developing Network Applications 257

. The application server can be queried for information, such as top scores or

batches of questions.

. The application server uses JavaServer Pages (JSP) to handle HTTP requests

and return the appropriate results in the XML format that the Android appli-

cation expects.

The application server developed for use with this book is not part of the code on
the website for this book. However, it is available for your use, in open source
form, at http://code.google.com/p/triviaquizserver/.

You could create an application server that has different characteristics than the

one described here. For example, you could create a SQL database-driven applica-

tion server using MySQL and PHP instead, or you could use a number of other

technologies.

Informing the User of Network Activity
In this hour, we’re most interested in how to query the application server and

retrieve the XML returned from a query. Networking support does not necessitate

any specific user interface or layout updates to the Been There, Done That! applica-

tion. However, any time the user is required to wait for an operation that takes

time—for example, for XML data to be downloaded from a server and parsed—it is

important to inform the user that something is happening, using a visual mecha-

nism such as an indeterminate ProgressBar control, as shown in Figure 15.1.

Otherwise, the user might abandon the application due to lack of response.

FIGURE 15.1
Using an inde-
terminate
progress bar to
inform the user
about a lengthy
operation.

Developing Network Applications
Developers who enable network support in applications need to be aware of a num-

ber of issues. These issues are very similar to those faced when enabling Location-

Based Services (LBS) features in an application. User privacy concerns, device per-

formance degradation, and unwanted network data charges are all common points

to consider when developing network applications. Also, network connectivity

(availability, strength, and quality) is not guaranteed, so enabling network support

gives your application a variety of opportunities to fail.

http://code.google.com/p/triviaquizserver/

ptg

Watch
Out!

258 HOUR 15: Adding Network Support

The Android system addresses these issues, in part through permissions, but much of

the burden of managing the impact of network features and performance falls upon

the developer. Here are some guidelines for developers leveraging network features

within applications:

. Use network services only when they are needed and cache data locally when-

ever possible.

. Inform the user when collecting and using sensitive data, as appropriate.

. Allow the user to configure and disable features that might adversely affect his

or her experience when using your application. For example, develop an air-

plane mode for your application to allow the user to enjoy your application

without accessing a remote server.

. Gracefully handle events such as no network coverage. Your application is

more valuable to the user if it is useful even without an Internet connection.

. Consider including a privacy message as part of your application’s terms of

use. Use this opportunity to inform the user about what data is collected from

the user, how it will and will not be used, and where it is stored (for example,

on a remote application server).

Most Android devices on the market at this time are Internet-enabled phones and
tablets, but the Android platform is not limited to just mobile devices. Not every
Android device is guaranteed to have network support, although it’s generally a
pretty safe bet that some form of access to the Internet will be available. Keep
this fact in mind when making assumptions about how much your application will
rely on a network.

Enabling Network Testing on the Emulator
You do not need to make any changes to the emulator to write network-enabled

applications. The emulator will use the Internet connection provided by your devel-

opment computer and simulate true network coverage. Also, the emulator has a

number of settings for simulating network latency and network transfer speeds,

which can give you a better idea of the actual experience a user would have. For

details on the network debugging features of the emulator, see the Android emulator

documentation.

Watch
Out!

Because the emulator uses your desktop Internet connection, it is likely to be
higher speed than a true Android device Internet connection will be.

ptg

Testing Network Applications on Hardware
As usual, the best way to test network-enabled applications is on the target Android

device. There are a number of network-related settings on an Android device. You

configure these settings through the Settings application on the device:

. Airplane Mode—This mode will block all network activity according to most

in-flight regulations.

. Wi-Fi—There are a number of Wi-Fi settings for when wireless networks are

available for use.

. Mobile Networks—There are several settings for handling data services when

roaming.

You can also find a lot of information about the phone service by clicking on the

Settings application from the application tray and choosing About Phone (or About

device) and then Status from the menus. Here, you will find important phone service

information, such as the following:

. Phone number (for example, 888-555-1212)

. Wireless network (for example, Verizon, T-Mobile)

. Network type (for example, CDMA EVDO rev. A, or EDGE)

. Signal strength (for example, -81 dBm 0 asu)

. Service state (for example, In service)

. Roaming state (for example, Roaming or Not roaming)

. Mobile network state (for example, Connected)

You can cause a mobile device to lose its signal by placing it inside a cookie tin,
refrigerator, microwave, or in any other shielded area. Doing so can be helpful for
testing signal and network service loss. Just don’t leave a handset in the cold too
long, or you will drain the battery. And don’t use the microwave with the phone
inside (common sense for all!).

Developing Network Applications 259

Did you
Know?

ptg

Watch
Out!

260 HOUR 15: Adding Network Support

Accessing Network Services
The Android platform has a wide variety of networking libraries. Those accustomed

to Java networking will find the java.net package familiar. There are also some

helpful Android utility classes for various types of network operations and protocols.

Developers can secure network communication by using common technologies such

as SSL and HTTPS.

To access a network, an Android application must have the appropriate permissions

granted within the Android manifest file. Network tasks are blocking operations,

and mobile networks can be very slow, so it is imperative that all network opera-

tions be handled asynchronously.

Network operations can take some time. Therefore, all network-related calls
should be handled asynchronously, separately from the main UI thread. This can
be accomplished by using the Java Thread class or by using the Android
AsyncTask class, which is discussed later in this hour.

Setting Network Permissions
To access network services on an Android device, you must have the appropriate

permissions. An Android application can use most networking services only if it is

granted the appropriate <uses-permission> settings configured in the Android

manifest file.

The following are some common permission values used by applications leveraging

the network:

. android.permission.INTERNET

. android.permission.ACCESS_NETWORK_STATE

There are a number of other permissions related to networking, including those that

allow access and changes to Wi-Fi state and network state. You might also want to

look at android.permission.WAKE_LOCK, to keep the device from sleeping.

Checking Network Status
The Android SDK provides utilities for gathering information about the current state

of a network. This is useful for determining whether a network connection is avail-

able before trying to use a network resource. By validating network connectivity

before attempting to make a connection, you can avoid many of the failure cases

ptg

Accessing Network Services 261

common in mobile device networking applications and provide your end users with

a more pleasant user experience.

Retrieving Network Status Information Programmatically
Applications need to register the android.permission.ACCESS_NETWORK_STATE per-

mission in the Android manifest file to read the network status of the device. To alter

the network state of the device, the application must also have the android.per-

mission.CHANGE_NETWORK_STATE permission.

Developers can leverage the ConnectivityManager class (android.net.

ConnectivityManager) to access network status information about the device

programmatically. You can get an instance of ConnectivityManager by using the

familiar getSystemService() method of the application’s Context object:

ConnectivityManager conMgr = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);

When you have a valid instance of ConnectivityManager, you can request the

mobile (cellular) network information by using the getNetworkInfo() method:

NetworkInfo netInfo =
conMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

The NetworkInfo class (android.net.NetworkInfo) has a number of methods for

retrieving important information about the network state, including whether the

network is available, connected, and roaming:

boolean isMobileAvail = netInfo.isAvailable();
boolean isMobileConn = netInfo.isConnected();
boolean isRoamingConn = netInfo.isRoaming();

The NetworkInfo class also has many other methods for determining fine-grained

network status information. These can be read about in the documentation.

Checking Server Availability Programmatically
Even if a network is available and connected, there is no guarantee that the remote

server you want to communicate with is accessible from the network. However,

ConnectivityManager has a handy method called requestRouteToHost() that allows

you to attempt to validate traffic, using a given network type (for example, mobile

network, Wi-Fi) and IP address is possible.

Using HTTP Networking
The most common network transfer protocol is Hypertext Transfer Protocol (HTTP).

Most commonly used HTTP ports are open and available for use on phone networks.

ptg

262 HOUR 15: Adding Network Support

A fast way to get to a network resource is by retrieving a stream to the content.

Many Android interfaces for reading data accept streams. One such example is

XmlPullParser. The setInput() method of XmlPullParser class takes an

InputStream. Previously, you retrieved this stream from the resources. Now, howev-

er, you can get it from a network resource, using the simple URL class, as shown

here:

URL xmlUrl = new URL(xmlSource);
XmlPullParser questionBatch =

XmlPullParserFactory.newInstance().newPullParser();
questionBatch.setInput(xmlUrl.openStream(), null);

From here, the parsing of the XML is unchanged because the XML format is the

same, and the XmlResourceParser used previously was derived from the

XmlPullParser class. Because the parsing may take longer now, you will move it off

the main thread later in the hour.

Once you have the question batches and score data downloading from the remote

server, you can remove the mock XML resources from the project and the code that

retrieves the XML resources.

Did you
Know?

If your application wants to retrieve and display web content, you can use the
WebView control, which leverages the WebKit rendering engine to draw HTML
content onscreen. You can use the WebView control to display local or remote
content.

Indicating Network Activity with
Progress Bars
Network-enabled applications often perform tasks such as connecting to remote

servers and downloading and parsing data. These tasks take processing time, and

the user should be aware that these activities are taking place. A great way to indi-

cate that an application is doing something is to show some sort of progress indica-

tor. The Android SDK provides two basic styles of the ProgressBar control to handle

determinate and indeterminate progress.

ptg

Indicating Network Activity with Progress Bars 263

Displaying Indeterminate Progress
The simplest ProgressBar control style is a circular indicator that animates (see

Figure 15.2). This kind of progress bar does not show progress per se but informs the

user that something is happening. You want to use this style of progress bar when

the length of the background processing time is indeterminate.

FIGURE 15.2
An indetermi-
nate progress
animation.

Did you
Know?

Displaying Determinate Progress
When you want to inform the user of specific milestones in progress, you can use

the determinate progress bar control. This control displays as a horizontal progress

bar that can be updated to show incremental progress toward completion (see

Figure 15.3). To use this progress indicator, you use the setProgress() method of

the ProgressBar control.

FIGURE 15.3
A determinate
progress bar.

As described later in this hour, you can put progress bars in the application’s title
bar. This can save valuable screen space. You often see this done on screens dis-
playing web content.

Displaying Progress Dialogs
You may want to indicate progress in a dialog window, as opposed to adding a

ProgressBar control to the layout of an existing screen. You can use the special

Dialog class called ProgressDialog for this purpose. For example, you can use

ProgressDialog windows (see Figure 15.4) in the Been There, Done That! applica-

tion to inform the user that data is being downloaded and parsed before displaying

the appropriate screen of the application.

ptg

By the
Way

264 HOUR 15: Adding Network Support

Here is the code needed to programmatically create and display the

ProgressDialog class:

ProgressDialog pleaseWaitDialog = ProgressDialog.show(
QuizGameActivity.this,
“Trivia Quiz”,
“Downloading trivia questions…”,
true);

You can use the dismiss() method to dismiss pleaseWaitDialog control when you

have completed any background processing:

pleaseWaitDialog.dismiss();

The pleaseWaitDialog control can be cancelled by the user if a fifth parameter
is added to the show() method and set to true. In this case, we don’t allow the
user to cancel the dialog because we want it showing during the entire download.
In the example code, which shows the final results for this hour, you’ll see we do
allow it to be cancelled, and you can read about it later in this hour.

Now you know how to create progress bars and display them in dialog windows

using ProgressDialog control. Because the progress you want to indicate should

actually be taking place asynchronously, it’s time to turn our attention to back-

ground processing.

FIGURE 15.4
Informing the
user that trivia
questions are
being down-
loaded.

ptg

Running Tasks Asynchronously 265

Running Tasks Asynchronously
Despite rapidly evolving technology, mobile wireless networks still provide relatively

slow Internet connections compared to those found in personal computers. Your

Android applications must be responsive, so you must always move all network

operations off the main UI thread and onto a secondary, “worker,” thread. The

Android platform provides two methods for doing this:

. AsyncTask—This abstract class can be used to offload background operations

from the UI thread easily. This class is the first choice when handling opera-

tions that require some time and thus might affect the performance and

responsiveness of your application.

. Thread and Handler—These classes can be used together to handle concurrent

processing and communicating with the UI thread’s message queue. This

advanced method allows more flexibility in terms of implementation, but

you, as the developer, are responsible for managing thread operations

appropriately.

For the Been There, Done That! application, the AsyncTask class is most appropriate

because it’s the most straightforward to implement.

Using AsyncTask
The Android SDK includes the AsyncTask class (android.os.AsyncTask) to help

manage background operations that will eventually post back to the UI thread.

Instead of using handlers and creating threads, you can simply create a subclass of

AsyncTask and implement the appropriate callback methods:

. onPreExecute()—This method runs on the UI thread before background pro-

cessing begins.

. doInBackground()—This method runs in the background and is where all the

real work is done.

. publishProgress()—This method, called from the doInBackground()

method, periodically informs the UI thread about the background process

progress. This method sends information to the UI process.

. onProgressUpdate()—This method runs on the UI thread whenever the

doInBackground() method calls publishProgress(). This method receives

information from the background process.

ptg

266 HOUR 15: Adding Network Support

. onPostExecute()—This method runs on the UI thread once the background

processing is completed.

When launched with the execute() method, the AsyncTask class handles process-

ing in a background thread without blocking the UI thread.

Using Threads and Handlers
When you want to control a thread yourself, you can use the Thread class in con-

junction with a Handler object.

The style of networking that has been presented so far causes the thread it’s running

on to block until the operation is finished. For small tasks, this might be acceptable.

However, when timeouts or additional processing time is needed, such as parsing

XML, you need to move these time-intensive operations away from the main UI

thread by launching a new thread. This provides a smoother experience for the user.

The following code demonstrates how to create and launch an anonymous thread

that connects to a remote server, retrieves and parses some XML, and posts a

response back to the UI thread, using a Handler object on the main thread to

change a TextView control called parsingStatus, which displays the parsing

status:

import android.os.Handler;
Handler mHandler = new Handler();
// ...
new Thread() {

public void run() {
// Instantiate XML parser

mHandler.post(new Runnable() {
public void run() {

parsingStatus.setText(“Began Parsing...”);
}

});

// XML Parsing loop here
// Update parsingStatus has needed…

mHandler.post(new Runnable() {
public void run() {

parsingStatus.setText(“Finished parsing...”);
}

});
}

}.start();

The Thread class uses the Handler object called mHandler to post information back

to the main UI thread.

ptg

By the
Way

Downloading and Displaying Scores 267

Downloading and Displaying Scores
Now let’s work through a simple example of using AsyncTask within the

QuizSettingsActivity class to handle the downloading and parsing of XML score

information. You begin by creating a subclass called ScoreDownloaderTask, which

extends the AsyncTask class within the QuizSettingsActivity class:

private class ScoreDownloaderTask extends AsyncTask<Object, String, Boolean> {
// TODO: Implement AsyncTask callback methods
TableLayout table;

}

Because you will be populating a TableLayout control as part of this background

task, it makes sense to add a handy member variable within ScoreDownloaderTask

as well.

Starting ScoreDownloaderTask
After you’ve implemented the ScoreDownloaderTask class, you will want to update

the onCreate() method of the QuizScoresActivity class to call the

ScoreDownloaderTask class’s execute() method when the screen first loads. The

execute() method takes two parameters: the server web address and the table to

populate with scores (a TableLayout control):

public static final String TRIVIA_SERVER_BASE =
“http://tqs.mamlambo.com/”;

public static final String TRIVIA_SERVER_SCORES =
TRIVIA_SERVER_BASE + “scores.jsp”;

// ...
allScoresDownloader =

new ScoreDownloaderTask();
allScoresDownloader.execute(TRIVIA_SERVER_SCORES, allScoresTable);

SharedPreferences prefs =
getSharedPreferences(GAME_PREFERENCES, Context.MODE_PRIVATE);

Integer playerId = prefs.getInt(GAME_PREFERENCES_PLAYER_ID, -1);

if (playerId != -1) {
friendScoresDownloader = new ScoreDownloaderTask();
friendScoresDownloader.execute(

TRIVIA_SERVER_SCORES + “?playerId=”
+ playerId, friendScoresTable);

}

Now that you have set up the ScoreDownloaderTask class, you can focus on imple-

menting the AsyncTask callback methods appropriately.

Don’t worry about the playerId value just yet. We’ll discuss that next hour.

ptg

268 HOUR 15: Adding Network Support

Starting the Progress Indicator
Next, you need to implement the onPreExecute() method, which runs on the UI

thread before background processing begins. This is the perfect place to demonstrate

adding to the title bar an indeterminate progress indicator:

@Override

protected void onPreExecute() {
mProgressCounter++;
QuizScoresActivity.this.setProgressBarIndeterminateVisibility(true);

}

There are two tabs of scores. Each tab’s scores are downloaded separately, and you

want the progress indicator to display until both are complete. Thus, you can create

a counter, mProgressCounter, to track each download. In this way, you could also

add a third tab, and the indicator would still hide at the correct time.

In the onCreate() method of the activity, the following line must be added before

the indeterminate progress bar indicator will display properly in the title bar:

requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

You must call this method before you call the setContentView() method.

Handling the Background Processing
Now it is time to identify what processing should run asynchronously. For this

example, it is the downloading and parsing code. You override the

doInBackground() method, which is where all the background processing takes

place. The methods called within doInBackground() will not block the main UI

thread. Here’s a sample implementation of the doInBackground() method, with

exception handling removed for clarity:

@Override

protected Boolean doInBackground(Object... params) {
boolean result = false;
String pathToScores = (String) params[0];
table = (TableLayout) params[1];
XmlPullParser scores = null;
URL xmlUrl = new URL(pathToScores);
scores = XmlPullParserFactory.newInstance().newPullParser();
scores.setInput(xmlUrl.openStream(), null);
if (scores != null) {

processScores(scores);
}
return result;

}

Here you simply generate the appropriate URL to the application server and use the

openStream() method to access the data stream from a remote application server.

ptg

Downloading and Displaying Scores 269

After you call the setInput() method of the XmlPullParser, you can use that

XmlPullParser just as you used the one pointed at local resource data.

Now move the processScores() method into the ScoreDownloaderTask class. Now

you will want to update the method, which simply takes the XmlPullParser and

parses the XML, to publish scores as they are parsed, using the publishProgress()

method:

private void processScores(XmlPullParser scores)
throws XmlPullParserException, IOException {
int eventType = -1;
boolean bFoundScores = false;

// Find Score records from XML
while (eventType != XmlResourceParser.END_DOCUMENT) {

if (eventType == XmlResourceParser.START_TAG) {

// Get the name of the tag (eg scores or score)
String strName = scores.getName();

if (strName.equals(“score”)) {
bFoundScores = true;
String scoreValue =

scores.getAttributeValue(null, “score”);
String scoreRank =

scores.getAttributeValue(null, “rank”);
String scoreUserName =

scores.getAttributeValue(null, “username”);
publishProgress(scoreValue, scoreRank, scoreUserName);

}
}
eventType = scores.next();

}

// Handle no scores available
if (bFoundScores == false) {

publishProgress();
}

}

The publishProgress() method can be called anytime within the

doInBackground() method to cause the onProgressUpdate() callback method to

be called. This allows the background process to communicate with the UI thread.

Handling Progress Updates
You can update the UI thread with background progress information by overriding

the onProgressUpdate() method. Here, you grab the new score just parsed from the

method parameters and insert a new row in the score TableLayout control:

@Override

protected void onProgressUpdate(String... values) {
if (values.length == 3) {

ptg

270 HOUR 15: Adding Network Support

String scoreValue = values[0];
String scoreRank = values[1];
String scoreUserName = values[2];
insertScoreRow(table, scoreValue, scoreRank, scoreUserName);

} else {
final TableRow newRow =

new TableRow(QuizScoresActivity.this);
TextView noResults =

new TextView(QuizScoresActivity.this);
noResults.setText(

getResources().getString(R.string.no_scores));
newRow.addView(noResults);
table.addView(newRow);

}
}

The insertScoreRow() method simply creates a new TableRow control and adds it

to the TableLayout control. The array of values must be passed in the same order

each time. This is because of how the AsyncTask Java template works.

Clearing the Progress Indicator
Next, you implement the onPostExecute() method, which runs on the UI thread

after background processing completes. Specifically, when you have completed all

parsing and displaying, you can hide the progress indicator shown in the title bar if

all the tasks are complete, as determined by mProgressCounter.

@Override

protected void onPostExecute(Boolean result) {
Log.i(DEBUG_TAG, “onPostExecute”);
mProgressCounter—;
if (mProgressCounter <= 0) {

mProgressCounter = 0;
QuizScoresActivity.this.

setProgressBarIndeterminateVisibility(false);
}

}

Handling Cancellation
You can handle cancellation of the background processing by overriding the

onCancelled() method. The onCancelled() method runs on the UI thread and,

if it’s called, it means that the onPostExecute() method will not be called. Thus,

any cleanup must be performed here. For this example, we perform the following

operation:

@Override

protected void onCancelled() {
Log.i(DEBUG_TAG, “onCancelled”);
mProgressCounter—;
if (mProgressCounter <= 0) {

ptg

Downloading and Parsing Question Batches 271

mProgressCounter = 0;
QuizScoresActivity.this.

setProgressBarIndeterminateVisibility(false);
}

}

The onCancelled() method is called when the cancel() method of AsyncTask is

called. This does not happen automatically. Instead, good practice is to cancel tasks

when they are no longer needed. For the scores screen, you’ll want to cancel the

tasks if they’re still running when the user leaves the screen for any reason. That is,

you cancel them in the onPause() method of the Activity, as shown here:

@Override

protected void onPause() {
if (allScoresDownloader != null &&

allScoresDownloader.getStatus() !=
AsyncTask.Status.FINISHED) {
allScoresDownloader.cancel(true);

}
if (friendScoresDownloader != null &&

friendScoresDownloader.getStatus() !=
AsyncTask.Status.FINISHED) {
friendScoresDownloader.cancel(true);

}
super.onPause();

}

Downloading and Parsing Question
Batches
Now that you understand how to download data asynchronously, you can use

AsyncTask to handle downloading and displaying the question batches on the

game screen. This process is very similar to the process involved in downloading

score data. However, you will not publish progress as you go; instead, you will sim-

ply display a progress bar until all questions in a given batch are downloaded.

Begin by creating a subclass called QuizTask that extends the AsyncTask class with-

in the QuizGameActivity class, like this:

private class QuizTask extends AsyncTask<Object, String, Boolean> {
// TODO: Implement AsyncTask callback methods

}

By the
Way

You might want to add a custom DEBUG_TAG member variable to the QuizTask
class. This allows you to differentiate between debugging information from the
background thread and UI thread.

ptg

272 HOUR 15: Adding Network Support

The QuizTask class also needs member variables for the starting question number

and a ProgressDialog to display background processing progress to the user:

int startingNumber;
ProgressDialog pleaseWaitDialog;

Once you’ve implemented the QuizTask class, you can update the onCreate()

method of the QuizGameActivity class to call the QuizTask class’s execute()

method when the screen first loads. The execute() method takes two parameters:

the server web address for question downloads and the starting question number

(an Integer) for the batch to download:

public static final String TRIVIA_SERVER_QUESTIONS =
TRIVIA_SERVER_BASE + “questions.jsp”;

// ...
QuizTask downloader = new QuizTask();
downloader.execute(TRIVIA_SERVER_QUESTIONS, startingQuestionNumber)

Starting the Progress Dialog
Now you need to implement the onPreExecute() method. This is the perfect place

to display a progress dialog that tells the user that the trivia questions are being

downloaded. The user won’t be able to do anything until the questions are down-

loaded. Although you put the indicator in the title bar when downloading the scores

earlier, you want to put the progress dialog over the game screen:

@Override

protected void onPreExecute() {
pleaseWaitDialog = ProgressDialog.show(

QuizGameActivity.this, “Trivia Quiz”,
“Downloading trivia questions”, true, true);

pleaseWaitDialog.setOnCancelListener(new OnCancelListener() {
public void onCancel(DialogInterface dialog) {

QuizTask.this.cancel(true);
}

});
}

Although we’ve used hardcoded strings here for clarity, a well-written application

would use string resources for easy localization. A cancel listener is added. This

allows the user to press the back button to cancel the dialog. When this happens,

the AsyncTask cancel() method is called. This means that cancelling the dialog

will now cancel the task, which will cancel the network activity.

ptg

Downloading and Parsing Question Batches 273

Handling the Background Processing
Now you need to identify what processing should run asynchronously. Again, this is

the downloading and parsing code. The following code (with exception handling

removed for clarity) shows how to override the doInBackground() method:

@Override

protected Boolean doInBackground(String... params) {
boolean result = false;
startingNumber = (Integer)params[1];
String pathToQuestions = params[0] +

“?max=” + QUESTION_BATCH_SIZE + “&start=” + startingNumber;
result = loadQuestionBatch(startingNumber, pathToQuestions);
return result;

}

Here, the background processing simply involves determining the appropriate ques-

tion batch to download and calling the helper method loadQuestionBatch(). This

method must be moved into the QuizTask class and updated to contact the applica-

tion server. Again, this is simply a matter of generating the appropriate URL, open-

ing the stream to the remote application server, and using the setInput() method

of XmlPullParser.

By the
Way

For the full code to the implementation, please see the sample code provided on
this book’s website.

Dismissing the Progress Dialog
Next, you implement the onPostExecute() method. Now that the background pro-

cessing has taken place, you can just drop in the code you originally used to display

the screen. This is also the perfect place to dismiss the progress dialog:

@Override

protected void onPostExecute(Boolean result) {
Log.d(DEBUG_TAG, “Download task complete.”);
if (result) {

displayCurrentQuestion(startingNumber);
} else {

handleNoQuestions();
}

pleaseWaitDialog.dismiss();
}

By the
Way

For the full code to the implementation, please see the sample code provided on
this book’s website.

ptg

274 HOUR 15: Adding Network Support

Summary
In this hour, you modified the Been There, Done That! application to download

data, including the quiz question batches and user scores, from a remote application

server. You learned how to use the AsyncTask class to handle background processing

and keep your application responsive. You also learned about many of the issues to

be aware of when developing network-enabled mobile applications.

Q&A
Q. What is the optimum batch size for downloads?

A. This is a tricky question. The short answer is: not so much data that the user is

tapping his or her foot, waiting for the application to run, but enough so that

the user doesn’t have to wait for downloads too often. Ideally, all downloading

would take place behind the scenes, while the user is doing something else,

such as answering the questions that have downloaded.

Q. Where can I find out more about the network protocol support available on
the Android platform?

A. Three good networking packages to browse within the Android SDK are

android.net, java.net, and org.apache.

Workshop

Quiz
1. Where can you find out information about an Android handset’s network

status?

A. On the status bar

B. In the Android Settings application

C. By calling the getHandsetNetworkStatus() method of the NetStatus

class

2. True or False: The Android emulator cannot simulate network speed and

latency similar to that found on real Android devices.

3. True or False: You must use Google App Engine for Android application

servers.

ptg

275Workshop

4. Which of the following is a not a network protocol or technology that Android

can use?

A. HTTP

B. HTTPS

C. TCP

D. IP

E. Raw Sockets (RS)

Answers
1. A and B. Some basic information about the device’s network status is indeed

shown on the status bar, but you can get detailed network status information

from the Android Settings application.

2. False. The Android emulator has a number of settings for simulating network

speed and latency.

3. False. You can use any server technology standard you want to implement an

application server to interact with the Android application. Google App

Engine is only one of many such technologies.

4. Trick question! All of the listed protocols or network technologies can be used

within Android applications. HTTP and HTTPS can be used for web technolo-

gies. TCP and IP are lower level network protocols used by Android and there

are standard Java APIs for direct network socket use.

Exercises
1. Test the Been There, Done That! application in a variety of network situations.

Modify the emulator settings to simulate a slow network and then run the

application and view the results.

2. Modify the application to use the Thread and Handler methods for back-

ground processing instead of the AsyncTask method.

3. Modify the application to download the next batch of trivia questions in the

background prior to running out of existing questions in the batch.

ptg

This page intentionally left blank

ptg

HOUR 16

Adding More Network Support

What You’ll Learn in This Hour:
. Accessing device telephony information
. Using HTTP client services
. Performing HTTP GET requests
. Performing HTTP POST requests
. Adding third-party JAR files to your project
. Working with multipart MIME files

In this hour, you enhance the Been There, Done That! application to upload player data

such as settings, scores, and avatars to the application server. You also learn how to access

information about the device’s telephony status. Finally, you add some external libraries

to an Android project and work with multipart MIME entities.

Determining Data to Send to the Server
So far, you have only downloaded data within the Been There, Done That! application.

Now it’s time to upload player information to the application server. To do this, you need

to learn how to use the Apache HTTP client features available on the Android platform, as

well as how to add extra Apache libraries to the project.

Three features of the Been There, Done That! application need to upload data to the appli-

cation server:

. QuizSettingsActivity—This class needs to create a player record on the applica-

tion server and upload player settings information.

. QuizGameActivity—This class needs to upload the player’s score.

. QuizSettingsActivity—This class needs to upload the avatar graphic.

ptg

278 HOUR 16: Adding More Network Support

To enable the Been There, Done That! application to handle live data, you need to

access an application server as well as add networking functionality to the client

Android application.

By the
Way

The full implementation of the networking code provided in this hour is available
on the book’s website, http://www.informit.com/title/9780321673350.

Accessing Phone Status Information
Some of the Been There, Done That! player settings will be uploaded to the applica-

tion server. The application server needs to be able to determine which player (or

device) it is communicating with. Therefore, the application uses the unique device

identifier of each player’s handset to differentiate between players. To get this

unique identifier, you need to access information available within the

TelephonyManager class.

In addition to the wide variety of Android SDK networking libraries you have

learned about thus far, you can also access phone status and telephony information

by using the TelephonyManager class. The TelephonyManager class allows an

Android application to access information about the phone carrier network, cellular

data connection, subscriber identity module (SIM), and the device.

Watch
Out! Android devices are not guaranteed to be mobile handsets. Support for telephony

service support may vary widely by phone type and service provider or may not be
available at all.

Setting Phone State Permissions
To access phone state information, an Android application must have the appropri-

ate permissions granted within the Android manifest file. Phone state information

cannot be accessed or modified by an Android application unless it is granted the

appropriate <uses-permission> settings configured in the Android manifest file.

The following are common permission values used by applications leveraging

phone state information:

. android.permission.READ_PHONE_STATE

. android.permission.MODIFY_PHONE_STATE

http://www.informit.com/title/9780321673350

ptg

Accessing Phone Status Information 279

Retrieving Telephony Information
Developers can leverage the TelephonyManager class

(android.telephony.TelephonyManager) to access network status information

about the device programmatically. You can get an instance of TelephonyManager

by using the familiar getSystemService() method of the application’s Context

object:

TelephonyManager telMgr = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);

Once you have a valid instance of TelephonyManager, you can request the detailed

information about the device and its telephony services.

Retrieving Call State Information
You can use the TelephonyManager class to determine the call state of a cellular

device by using the getCallState() method. This method tells you whether the

phone is idle, off the hook, or currently receiving an incoming call.

You can also register to listen for changes in the phone state by using the listen()

method, so that your application can receive a notification when an incoming call

occurs. You might use this information to screen specific phone numbers or prepare

the application for the user to answer the phone.

Retrieving Network Type Information
You can use the TelephonyManager class to query the network radio type of a cellu-

lar network by using the getNetworkType() method. This method tells you which

network type the device is currently using, such as GPRS, EDGE, or EVDO. These and

many other network types (for example, NETWORK_TYPE_GPRS) are defined as con-

stants in the TelephonyManager class.

You can also register to listen for changes in the network type by using the listen()

method. You might use this type of information to listen for a high-speed data con-

nection and use the opportunity to download larger batches of quiz questions in the

background to cache for future use in the game or to modify the batch size to down-

load the optimum number of questions at a time to keep your application respon-

sive to users and improve user experience.

Determining Whether the Phone Is CDMA or GSM
You can use the getPhoneType() method of the TelephonyManager class to deter-

mine whether a handset is a CDMA or GSM phone. Furthermore, you can get the

unique identifier of the handset by using the getDeviceId() method. This method

ptg

280 HOUR 16: Adding More Network Support

returns the IMEI for GSM phones or the MEID for CDMA phones. You can also get

the unique subscriber identifier (such as IMSI for GSM subscribers) by using the

getSubscriberId() method.

Retrieving SIM Information
The TelephonyManager class has a number of methods for retrieving information

about the SIM card and SIM provider. The following are some examples:

. getSimState()—This method returns the state of the SIM card, such as

whether the SIM card is in the handset and whether it is locked (that is,

requires a PIN) or ready for use.

. getSimSerialNumber()—This method returns the unique serial number of the

SIM card.

. getSimOperatorName()—This method returns the name of the SIM provider.

. getSimOperator()—This method returns the mobile country code and net-

work code for the SIM provider.

Retrieving Device Voice Mail Information
You can use the TelephonyManager class to retrieve information about the phone

user’s voice mail. For example, you access the voice mail number by using the

getVoiceMailNumber() method.

Retrieving Network Roaming Information
You’ve already seen how to access roaming information from the networking servic-

es, found in Hour 15, “Adding Network Support.” You can also determine whether

the subscriber service is roaming by using the isNetworkRoaming() method of the

TelephonyManager class. This is not necessarily a reliable method for determining

whether a user will be charged extra for data or phone calls but you can consider it

a hint that the user might be charged (depending on the user’s service plan).

However, an application could use this information to prompt the user to choose

whether to allow network usage when roaming, with a message such as “Your

handset appears to be roaming. Would you like to continue?”

Retrieving Other Telephony Status Information
The TelephonyManager class also has many other methods for determining fine-

grained device telephony status information. See the Android SDK documentation

for more details.

ptg

Uploading Data to a Remote Application Server 281

Uploading Data to a Remote
Application Server
In Hour 10, “Building Forms to Collect User Input,” you created the settings screen

and stored the data in SharedPreferences. Now you will modify this screen to

upload a copy of the player settings to the server (in addition to storing it in

SharedPreferences). With this particular implementation, the client device always

has the last word in the data. The application server simply stores a copy of the set-

tings. This particular application does not have two-way synchronization; that

would be beyond the scope of this book and take quite a bit longer than an hour to

explain.

Did you
Know?

You can use the SmsManager class (android.telephony.SmsManager) and the
SmsMessage class (android.telephony.SmsMessage) to send SMS messages.

By the
WayTo keep the code readable and demonstrate important networking functionality,

we’ve taken some liberties in the application architecture and have not always
used the network in the most efficient fashion. However, the methods we have
used allow us to demonstrate important features such as background updating,
progress indicators, and more features of the AsyncTask class.

To communicate with the application server, you can leverage the HttpClient

package (org.apache.http) included in the Android SDK. This package provides

utilities for handling a wide variety of HTTP networking scenarios within your appli-

cation.

You will learn how to use HttpGet to post query variables in the same way a web

form submission would work, using the HTTP GET method. Then you’ll learn how to

use HttpPost to post form variables and upload the avatar graphic, in the same

way a web form might use the HTTP POST method.

The application server was written with HTML web forms in mind. In fact, the server

was tested using a standard HTML form before the Android client was written. By

developing a web client before the Android client, you ensure that the client/server

communication protocols used are standard and cross-platform compatible. When

you use this procedure, you know that any platform—including Android—that can

handle web form–style GET and POST methods will be compatible with this applica-

tion server. This way, the application can rely on the Apache HTTP libraries—

primarily the org.apache.http.client package.

ptg

282 HOUR 16: Adding More Network Support

Uploading Player Data with the HTTP GET Method
The player data is submitted to the application server by using the HTTP GET

method via the HttpGet class. Because you are posting form query variables, you

want to use the URLEncodedUtils utility with a List container of

BasicNameValuePair objects to assist with creating the final URL for the request.

Finally, the whole network operation must be wrapped inside the AsyncTask object

so that the user interface can continue to respond while the network request is being

handled.

Creating an AsyncTask Class to Handle Uploads
To upload the user settings information to the application server, you need to add

another AsyncTask subclass called AccountTask to QuizSettingsActivity. The

AccountTask class can be run using the execute() method whenever the player

changes a setting on the settings screen (see Figure 16.1). You can also run this task

when the user first launches the application, to set up a unique player identifier on

the application server for this player on this particular device, even if the person has

not entered his or her nickname or email address. This could also allow you to

retrieve the settings data from the server (via two-way syncing).

By the
Way

The application server developed for use with this book is not part of the code on
the website for this book. However, it is available for your use, in open source
form, at http://code.google.com/p/triviaquizserver/.

Watch
Out!

Network upload operations can take some time. Therefore, all network-related
calls should be handled asynchronously, separately from the main user interface
thread. This can be accomplished by using the Java Thread class or by using the
Android AsyncTask class. Also, make sure to inform the user of lengthy opera-
tions by using a mechanism such as a ProgressBar control. For more informa-
tion, see Hour 15.

http://code.google.com/p/triviaquizserver/

ptg

Uploading Data to a Remote Application Server 283

The details of the AccountTask subclass are very similar to those of the other

AsyncTask subclasses you have written over the past two hours. (In the following

example, exception handling has been removed for clarity and brevity.) The only

interesting method here is doInBackground(), which communicates player settings

to the application server:

@Override

protected Boolean doInBackground(Object... params) {
Boolean succeeded = false;

Integer playerId =
mGameSettings.getInt(GAME_PREFERENCES_PLAYER_ID, -1);

String nickname =
mGameSettings.getString(GAME_PREFERENCES_NICKNAME, “”);

String email =
mGameSettings.getString(GAME_PREFERENCES_EMAIL, “”);

String password =
mGameSettings.getString(GAME_PREFERENCES_PASSWORD, “”);

Integer score =
mGameSettings.getInt(GAME_PREFERENCES_SCORE, -1);

Integer gender =
mGameSettings.getInt(GAME_PREFERENCES_GENDER, -1);

Long birthdate =
mGameSettings.getLong(GAME_PREFERENCES_DOB, 0);

String favePlaceName =
mGameSettings.getString(GAME_PREFERENCES_FAV_PLACE_NAME, “”);

Vector<NameValuePair> vars = new Vector<NameValuePair>();

if (playerId == -1) {
TelephonyManager telManager =

FIGURE 16.1
Using an inde-
terminate
progress indica-
tor in the top
right of the
menu bar (faint
circle).

ptg

284 HOUR 16: Adding More Network Support

(TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);
String uniqueId = telManager.getDeviceId();
vars.add(new BasicNameValuePair(“uniqueId”, uniqueId));

} else {
vars.add(

new BasicNameValuePair(“updateId”, playerId.toString()));
vars.add(

new BasicNameValuePair(“score”, score.toString()));
}

vars.add(new BasicNameValuePair(“nickname”, nickname));
vars.add(new BasicNameValuePair(“email”, email));
vars.add(new BasicNameValuePair(“password”, password));
vars.add(new BasicNameValuePair(“gender”, gender.toString()));
vars.add(new BasicNameValuePair(“faveplace”, favePlaceName));
vars.add(new BasicNameValuePair(“dob”, birthdate.toString()));

String url =
TRIVIA_SERVER_ACCOUNT_EDIT+ “?” + URLEncodedUtils.format(vars, null);

HttpGet request = new HttpGet(url);
ResponseHandler<String> responseHandler =

new BasicResponseHandler();
HttpClient client = new DefaultHttpClient();
String responseBody = client.execute(request, responseHandler);

if (responseBody != null && responseBody.length() > 0) {
Integer resultId = Integer.parseInt(responseBody);
Editor editor = mGameSettings.edit();
editor.putInt(GAME_PREFERENCES_PLAYER_ID, resultId);
editor.commit();
succeeded = true;

}
return succeeded;

}

Don’t be overwhelmed by this code. It is actually pretty straightforward: You begin

by creating a vector of name/value pairs for each of the player settings (saved in

SharedPreferences) that you want to communicate to the server.

If this is the first time these player settings are being communicated to the server, a

new record will be created. The new record is basically an empty player record on

the server, with only one value: the device’s unique identifier. This allows you to

have a reasonable identifier for the player, even before he or she begins to enter

other settings information. It also makes it possible for the player to change other

information, such as his or her nickname, without unforeseen consequences. You

should store the resulting identifier because it is used in all future requests.

When you have all the appropriate query variables set, you are ready to generate

the request. You can use the handy URLEncodedUtils.format() method to format

the vector of variables for the GET request. Finally, you initialize an HttpGet object,

ptg

Uploading Data to a Remote Application Server 285

pass the GET request string you formulated, and execute it by using an HttpClient

instance.

The HttpClient class provides helper utilities, in the form of the ResponseHandler

classes, to parse the response. In this case, BasicReponseHandler is used to easily

retrieve the body of the response as a String object. In this case, the String object

contains the unique player ID, which can be stored in SharedPreferences for

future use.

It is typically not a good idea to send sensitive data across networks in plain text.
For example, the device identifier could be used for nefarious purposes. Because
all this application needs is some sort of unique but repeatable identifier, you
could use a one-way hashing function, such as Secure Hash Algorithm (SHA), to
do secure the device identifier data. The MessageDigest class, part of the
java.security package, conveniently provides this ability:

MessageDigest sha = MessageDigest.getInstance(“SHA”);
byte[] enc = sha.digest(uniqueId.getBytes());

The book’s website contains the full implementation of this example and sends
the hashed value to the server.

Handling Player Score Uploads
To upload the player score information to the application server, you might want to

add another AsyncTask subclass to the QuizGameActivity class. But why not just

update the existing QuizTask to communicate the player’s score to the application

server each time the game downloads new questions? This can help reduce latency

and increase network efficiency.

You can simply add the score information as a query variable of the request being

sent to the server within the doInBackground() method of the QuizTask class. You

use the following code to accomplish this:

SharedPreferences settings =
getSharedPreferences(GAME_PREFERENCES, Context.MODE_PRIVATE);

Integer playerId = settings.getInt(GAME_PREFERENCES_PLAYER_ID, -1);
if (playerId != -1) {

Log.d(DEBUG_TAG, “Updating score”);
Integer score = settings.getInt(GAME_PREFERENCES_SCORE, -1);
if (score != -1) {

pathToQuestions +=
“&updateScore=yes&updateId=”+playerId+”&score=”+score;

}
}

The code is added right after the pathToQuestions URL is created but before it’s

used so it can be updated.

By the
Way

ptg

286 HOUR 16: Adding More Network Support

Uploading Player Avatars with HTTP POST
To upload binary data such as an avatar image, you need to consider using an

HTTP POST request, as opposed to a GET request. This allows you to submit the

avatar content much as you would in an HTML web form. The application server

can then handle the POST request appropriately and save a copy of the player

avatar (see Figure 16.2).

Did you
Know?

You could also use a List container of BasicNameValuePair objects in conjunc-
tion with the URLEncodedUtils.format() method. However, for primitive values,
such as integers, no additional encoding is needed.

FIGURE 16.2
Uploading the
avatar.

Watch
Out!

Whenever you are storing non-primitive types of data, consider the best practices
for the datastore your application server relies upon. For example, one common
practice for SQL databases is to store the address to the image in the database
but not store the binary data (as a blob).

Adding JAR Files to Your Android Project
Ideally, you want to use the HttpClient class to upload a multipart MIME message

containing the avatar and some other important information for the application

server. However, as of this writing, Apache HttpClient support within the Android

ptg

Uploading Data to a Remote Application Server 287

SDK is incomplete. The Android SDK does not yet contain multipart MIME support,

but this is likely to change in a future version of the SDK. For now, if you want to

include multipart MIME support, you must add these Apache libraries to your proj-

ect as JAR files. Specifically, you’ll need to add the following JAR files to your project:

. Mime4j (http://james.apache.org/mime4j/index.html)

. HttpMime 4.0 (http://hc.apache.org/httpcomponents-

client/httpmime/index.html)

. Apache Commons IO (http://commons.apache.org/io/)

Did you
Know?

Don’t know what multipart MIME is? A great description is available on Wikipedia:
http://en.wikipedia.org/wiki/MIME#Multipart_messages. Essentially, multipart
MIME is a way of encoding multiple pieces of data—including binary data—in a
single text message. Multipart MIME messages used with an HTML form corre-
spond to the content encoding type multipart/form-data. Multipart MIME is not
limited to HTTP. For example, email messages often use multipart MIME.

Try It Yourself

Adding a JAR File to an Android Project
To add a JAR file to an Android project, follow these steps:

1. Download the JAR file(s) you want to include in your project.

2. Create a directory called /libs in your project. This folder should be at the

same level as the /src and /res folders.

3. Copy the JAR file(s) to the /libs directory.

4. Under Android Project Properties, select the Java Build Path menu option and

navigate to the Libraries tab.

5. Click the Add JARs button and choose the JAR files you want to add to the

project. Click OK.

6. Refresh the project, if necessary. Code away!

To have full multipart MIME support in the Been There, Done That! applica-

tion, you need to add all three JAR files listed earlier. These packages also add

some other interesting utilities, such as the IOUtils class, which provides a

number of handy methods for dealing with data streams.

▼

▲

http://james.apache.org/mime4j/index.html
http://hc.apache.org/httpcomponentsclient/httpmime/index.html
http://hc.apache.org/httpcomponentsclient/httpmime/index.html
http://commons.apache.org/io/
http://en.wikipedia.org/wiki/MIME#Multipart_messages

ptg

288 HOUR 16: Adding More Network Support

Creating an AsyncTask Class to Handle Avatar Uploads
To upload the avatar graphic to the application server, you need to add another

AsyncTask subclass called ImageUploadTask to the QuizSettingsActivity class.

The ImageUploadTask class can be run using the execute() method whenever the

player sets a new avatar on the settings screen.

The details of the ImageUploadTask class are very similar to those of the other

AsyncTask subclasses you have written over the past two hours. The only really

interesting part to this new task is the avatar file handling code needed within the

doInBackground() method (exception handling removed for clarity and brevity):

@Override

protected Boolean doInBackground(Object... params) {
String avatar =

mGameSettings.getString(GAME_PREFERENCES_AVATAR, “”);
Integer playerId =

mGameSettings.getInt(GAME_PREFERENCES_PLAYER_ID, -1);

MultipartEntity entity =
new MultipartEntity(HttpMultipartMode.BROWSER_COMPATIBLE);

File file = new File(avatar);
FileBody encFile = new FileBody(file);
entity.addPart(“avatar”, encFile);
entity.addPart(“updateId”, new StringBody(playerId.toString()));

HttpPost request = new HttpPost(TRIVIA_SERVER_ACCOUNT_EDIT);
request.setEntity(entity);

HttpClient client = new DefaultHttpClient();
ResponseHandler<String> responseHandler =

new BasicResponseHandler();
String responseBody = client.execute(request, responseHandler);

if (responseBody != null && responseBody.length() > 0) {
Log.w(DEBUG_TAG,

“Unexpected response from avatar upload: “ + responseBody);
}
return null;

}

You need to create a browser-compatible multipart MIME object by using the

MultipartEntity class and add two parts: one for the avatar file contents and one

for the unique player identifier that the avatar belongs to. Next, you generate an

HttpPost object with the URL to the application server. Finally, you set the entity

within the HttpPost object by using the setEntity() method. To send the request

and retrieve the response, you use the HttpClient and ResponseHandler classes as

usual.

ptg

289Workshop

Summary
In this hour, you modified the Been There, Done That! application to upload game

data—including player settings, avatar, and scores—to a remote application server.

You also learned how to retrieve telephony information, such as network type and

roaming information, via TelephonyManager. In addition, you learned how to use

the HTTP GET and POST methods with HttpClient when uploading data to a

server.

Q&A
Q. How can I avoid uploading user data in plain text?

A. There are many ways you can protect user data during transmission. For

example, you can encrypt all data being sent over HTTP via SSL, using HTTPS.

Passwords that have already been shared through a secured channel can be

sent in hashed form, using MessageDigest.

Q. Is JavaScript Object Notation (JSON) support available on the Android plat-
form?

A. Yes, you can find JSON libraries in the org.json package in the Android SDK.

Workshop

Quiz
1. Which of the following can the TelephonyManager class provide information

about?

A. Call State

B. Network Type

C. UserName

2. True or False: The Android SDK comes complete with full multi-part MIME

handling support.

3. True or False: Network operations should always be performed on the UI

thread so they are as fast as possible.

ptg

290 HOUR 16: Adding More Network Support

4. Which of the following are classes or objects that cannot be used to perform

tasks in the background?

A. BackgroundTask

B. AsyncTask

C. Thread

D. AsyncActivity

Answers
1. A and B. The TelephonyManager can provide Call State and Network Type

information.

2. False. There is no built-in MIME support. Instead, this hour demonstrates how

to add external libraries that have MIME support.

3. False. Lengthy operations, such as networking operations, should never be

performed on the UI thread to keep the handset as responsive as possible.

4. A and D. An AsyncTask is really a helper class that simplifies the use of a

Thread. Both classes can be used. The other two are not SDK provided classes,

if they exist at all.

Exercises
1. Use the hashed unique device ID and the URL http://tqs.mamlambo.com/get-

player to perform a GET request to retrieve player info and load up the set-

tings with the data from the server. Pass in just the playerId to get public

data or pass in playerId and password to get all the data (this is what you’ll

need for a full recovery).

2. Add a new feature to the application to allow players to suggest for new trivia

questions via SMS to the developer.

3. Add a new feature to the application that allows players to suggest new trivia

questions—with images—by uploading them via multipart MIME POST to

http://tqs.mamlambo.com/suggest, with a player identifier form field

(playerId), question text form field (question), and question image form

field (questionImage), with the image data done in the same way as for the

avatar image used in this hour.

http://tqs.mamlambo.com/get-player
http://tqs.mamlambo.com/get-player
http://tqs.mamlambo.com/suggest

ptg

HOUR 17

Adding Social Features

What You’ll Learn in This Hour:
. Enhancing applications with social features
. Adding friend request support
. Displaying friends’ scores
. Integrating with third-party social networking services

In this hour, you enhance the Been There, Done That! application by adding some social

integration. Specifically, you modify the application to allow the user to keep track of

other players’ scores. You also review the many ways in which Android applications can

use social features and third-party social networking sites to improve the game experience

for users.

Enhancing Your Application with Social
Features
The Been There, Done That! application has really taken shape over the past few hours.

However, it’s not terribly fun to play a game all alone. Ideally, users want to be able to

share the game experience with other players. Applications that allow some sort of user

interaction are more likely to become viral and more popular, thus ensuring success.

Social applications can be roughly divided into two categories: those that are designed to

access social networks, such as MySpace or Facebook, directly and applications that use

social information to enhance the user’s game experience. The Been There, Done That!

game is ideal for this latter use.

ptg

292 HOUR 17: Adding Social Features

Tailoring Social Features to Your Application
Determining what social and interactive features to build into your application can

be tricky business. As an application designer, you might ask yourself questions like

the following:

. What social features, if any, make sense in my application? Will the applica-

tion use social features to encourage competition (high score comparisons,

notifications when a friend surpasses the user’s high score, and so on)? Will

the application use social networking features to broadcast game activity (post

game wins to Facebook or a Twitter feed) and thus enable free promotional

opportunities for the application?

. How can my end user invite contacts to play my application? Will users enter

their friends’ email addresses, phone numbers, or user names to connect with

them? Will invitations be delivered via email? SMS? Will player relationships,

like friendships, need to be confirmed by both sides?

. What existing social networking sites (Facebook, Twitter, and so on) are my

target users a part of, and does it make sense for my application to integrate

any of these sites’ features?

. How will my application protect its users’ (and their friends’) privacy? What

guidelines will I use to determine what the application (and my company)

can and cannot do with private user data?

Supporting Basic Player Relationships
Social applications rely on relationships between users. Different applications

describe these relationships using different terminology. The terms contact and friend

are the most widely used terms to describe user relationships, but some sites use

unique terminology, such as user’s circle or follower. Clever applications sometimes

refer to friends or contacts within the theme of the game. For example, a clever war-

themed game might use the phrase “recruit fellow warriors for the mission” instead

of the more generic “invite your friends to play the game by giving us their email

addresses.”

Adding Friend Support to Your
Application
For the Been There, Done That! application, you will add some light social integra-

tion to allow players to follow other players’ game scores. This is a relatively simple

ptg

By the
Way

Adding Friend Support to Your Application 293

way to encourage game play. By sharing only “public” score information, you can

avoid having to build in support for friend validation and confirmation.

The simple social feature you will add in this hour works as follows:

1. A player adds a friend’s email address to mark the person as a friend.

2. If the email address matches that of another player on the application server,

a friendship link is established.

3. The players now see each other’s scores on the Scores of Friends tab of the

scores screen.

The full implementation of the code provided in this hour is available at this
book’s website, http://www.informit.com/title/9780321673350.

Enabling Friend Requests on the Settings Screen
To add friend support to the Been There, Done That! application, you need to

update QuizSettingsActivity to allow the user to input friend email addresses.

Specifically, you need to do the following:

. Add a button to the settings screen to launch a new dialog.

. Implement the dialog to QuizSettingsActivity to allow the user to input a

friend’s email address.

. Add some networking code to communicate the friend request to the applica-

tion server.

Updating the Settings Screen Layout
You need to update the user interface of the Been There, Done That! application to

allow a player to enter friends’ email addresses. There are a number of ways you

could go about doing this, of course. You could add a new activity and update the

menu screen, allowing for a whole new screen in the application, or you could just

update the settings screen with a new area.

To keep things simple, you can just add a new section at the bottom of the settings

screen that acts much like the other settings that rely on a dialog (see Figure 17.1).

http://www.informit.com/title/9780321673350

ptg

294 HOUR 17: Adding Social Features

For example, you could add the following just below the favorite place layout

controls:

<TextView
android:id=”@+id/TextView_Friend_Email”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”@string/settings_friend_email_label”
android:textSize=”@dimen/help_text_size”
android:textStyle=”bold”></TextView>

<LinearLayout
android:id=”@+id/LinearLayout_Friend_Email”
android:orientation=”horizontal”
android:layout_height=”wrap_content”
android:layout_width=”fill_parent”>
<Button

android:id=”@+id/Button_Friend_Email”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”@string/settings_button_friend_email”></Button>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:textSize=”@dimen/help_text_size”
android:textStyle=”bold”
android:gravity=”center”
android:id=”@+id/TextView_Friend_Email_Tip”
android:text=”@string/settings_friend_email_tip”></TextView>

</LinearLayout>

FIGURE 17.1
The settings
screen updated
to allow for
friend requests.

ptg

Adding Friend Support to Your Application 295

Like other settings on this screen, the layout updates involve adding several

TextView labels and a Button control called Button_Friend_Email. Clicking this

button will launch a new dialog. Therefore, you need to add a new layout resource

to describe the dialog layout (see Figure 17.2).

FIGURE 17.2
Preview of the
friend request
dialog layout.

This layout should be defined as follows in the XML layout file called /res/

layout/friend_entry.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”
android:id=”@+id/root”
android:orientation=”vertical”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:background=”@drawable/bkgrnd”>
<TextView

android:id=”@+id/TextView_Friend_Email”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:textSize=”@dimen/help_text_size”
android:textStyle=”bold”
android:text=”@string/settings_friend_email”></TextView>

<EditText
android:id=”@+id/EditText_Friend_Email”
android:layout_height=”wrap_content”
android:maxLength=”50”
android:layout_width=”fill_parent”
android:maxLines=”1”
android:inputType=”textEmailAddress”></EditText>

</LinearLayout>

The contents of this layout are straightforward. The layout is a LinearLayout con-

tainer with two controls: a TextView label that prompts the user to enter an email

address and an EditText control to receive the email address string from the user.

ptg

296 HOUR 17: Adding Social Features

Launching the Friend Request Dialog
Clicking the Button control called Button_Friend_Email launches a dialog that

allows the user to enter a friend’s email address. This dialog is launched much the

same as any other dialog in the settings screen:

Button addFriend = (Button) findViewById(R.id.Button_Friend_Email);
addFriend.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
showDialog(FRIEND_EMAIL_DIALOG_ID);

}
});

You need to update the onCreateDialog() method of the QuizSettingsActivity

class to include a case statement for this new dialog:

case FRIEND_EMAIL_DIALOG_ID:

final View friendDialogLayout = layoutInflater.inflate(
R.layout.friend_entry, (ViewGroup) findViewById(R.id.root));

AlertDialog.Builder friendDialogBuilder =
new AlertDialog.Builder(this);

friendDialogBuilder.setView(friendDialogLayout);
final TextView emailText = (TextView)

friendDialogLayout.findViewById(R.id.EditText_Friend_Email);

friendDialogBuilder.setPositiveButton(
android.R.string.ok, new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

String friendEmail = emailText.getText().toString();
if (friendEmail != null && friendEmail.length() > 0) {

doFriendRequest(friendEmail);
}

}
});
return friendDialogBuilder.create();

This dialog implementation should look quite familiar. Again, you are building up

an AlertDialog control by inflating a layout resource. When the user clicks the OK

button in the dialog (see Figure 17.3), the email address is communicated to the

application server asynchronously, using the FriendRequestTask class. (We’ll talk

more about this in a moment.) The application server is responsible for setting up

the friend relationship if the friend’s email address exists in the datastore.

ptg

Adding Friend Support to Your Application 297

Creating an AsyncTask Subclass to Handle Friend Requests
To send friend requests to the application server, you need to add another

AsyncTask subclass called FriendRequestTask to QuizSettingsActivity. The

FriendRequestTask class can be run using the execute() method whenever the

player inputs a friend’s email address in the friend request dialog and presses OK.

The details of the FriendRequestTask class are very similar to those of the other

AsyncTask subclasses you have written over the past few hours. (In the following

example, exception handling has been removed for clarity and brevity.) The only

really interesting part to this new task is the friend request code within the

doInBackground() method:

@Override

protected Boolean doInBackground(String... params) {
Boolean succeeded = false;
String friendEmail = params[0];
SharedPreferences prefs =

getSharedPreferences(GAME_PREFERENCES, Context.MODE_PRIVATE);
Integer playerId = prefs.getInt(GAME_PREFERENCES_PLAYER_ID, -1);

Vector<NameValuePair> vars = new Vector<NameValuePair>();
vars.add(new BasicNameValuePair(“command”, “add”));
vars.add(new BasicNameValuePair(“playerId”, playerId.toString()));
vars.add(new BasicNameValuePair(“friend”, friendEmail));
HttpClient client = new DefaultHttpClient();
HttpPost request = new HttpPost(TRIVIA_SERVER_FRIEND_EDIT);
request.setEntity(new UrlEncodedFormEntity(vars));
ResponseHandler<String> responseHandler = new BasicResponseHandler();

FIGURE 17.3
The friend
request dialog.

ptg

298 HOUR 17: Adding Social Features

String responseBody = client.execute(request, responseHandler);
if (responseBody != null) {

succeeded = true;
}
return succeeded;

}

Here, you use HttpClient to execute an HTTP POST request, using form variables, to

the application server. You can form the HttpPost request object by combining the

appropriate application server URL with the query variables, encoded using the

handy UrlEncodedFormEntity class, set as the entity for the POST request. When

the query is fully formed, you can execute the request by using the execute()

method of HttpClient, as you have in previous examples. Then you simply check

the response to determine whether the friend request was successful by checking the

resulting ResponseHandler object.

Displaying Friends’ Scores
Now that players can add friends, you need to update QuizScoresActivity to pop-

ulate the Scores of Friends tab with live data from the application server. Luckily,

this feature is straightforward because the application server is the primary handler

for friend relationships. Retrieving friends’ scores is simply a slightly different query

on the application server datastore.

Displaying friends’ scores on the scores screen is handled exactly the same way as

displaying the all-time-high scores, except that the application server URL for the

data request includes the identifier of the player. The application server then knows

you want to filter the scores to just those connected to that player.

From an implementation perspective, you can simply create another instance of

ScoreDownloaderTask to retrieve these scores and populate the Scores of Friends tab

(see Figure 17.4). When you have the scores screen working with live data, you can

remove the mock XML resource files and any associated code from the project.

ptg

Adding Friend Support to Your Application 299

Enhancing Player Relationships
Enabling friend relationships can greatly enhance the experience for users in a vari-

ety of ways above and beyond what you have implemented thus far. Adding friend

support may seem like a very lightweight social feature, but imagine how you can

build up more social features from this simple starting point. Player relationships

allow developers the flexibility to enhance applications in a variety of ways, such as

the following:

. The application server could send an email invitation to any friend who did

not already exist in the database.

. Players do not need to be restricted to the Android platform. Other platforms

(web, iPhone, BlackBerry, and so on) could easily be added. This means

friends could contact the same application server and play each other across

platforms.

. Friend relationships could be one way or two way (showing up on one or both

players’ Friends lists). Different trust relationships could be established, allow-

ing players access to different types of information about other players,

including friends’ answers to questions and their favorite place in the world.

FIGURE 17.4
The Scores of
Friends tab.

ptg

300 HOUR 17: Adding Social Features

. After a friend relationship has been established, more application features

could be added, including challenges, messaging, notifications…the sky’s the

limit. Use your imagination.

The complete implementation of the friends feature as described in this hour may

seem incomplete—and it is! Any application incorporating a similar friends features

should, at minimum, allow the player to manage (for example, view, delete) his or

her existing friend relationships. However, these improvements are left as exercises

for the reader.

Integrating with Social Networking
Services
Social networking has really come into its own in the past few years, allowing peo-

ple to connect, keep in touch, and share information (for better or worse) about

their lives. Many social networking sites have developed APIs for third-party devel-

opers, many of which are web services based on representational state transfer

(REST). There has been an explosion in the number of applications available for

social networks, such as Facebook.

Android applications can integrate with a social networking site through develop-

ment programs and the API provided by the specific site or service. The level of inte-

gration may range from lightweight to complete. Here are some examples of social

networking integration you could consider in an Android application:

. Giving the user the option to automatically tweet on Twitter when he or she

wins a game.

. Writing an application that allows the user to view and update his or her per-

sonal blog, Twitter feed, and Facebook status.

. Developing a fully featured Twitter client application.

In each case, Twitter features are integrated into the Android application in different

ways. Now let’s look at adding support for some of the social networking services

that are popular today.

Adding Facebook Support
Facebook is a popular social web service where people can connect, share pictures

and video, and chat. Facebook provides a portal for developers who want to

ptg

Integrating with Social Networking Services 301

integrate Facebook functionality into third-party applications at http://developers.

facebook.com. You can find out more about the Facebook Platform for Mobile

(Facebook Connect, Facebook SMS, and so on) at http://wiki.developers.facebook.

com/index.php/Mobile.

Adding Twitter Support
Twitter is a popular social networking service where people share short text mes-

sages called tweets. Each tweet is only 140 or fewer characters, making Twitter an

ideal platform for mobile. Twitter provides a portal for developers, with reference

information about the Twitter API, at http://apiwiki.twitter.com.

Working with the OpenSocial Initiative
When you want to target more than one social networking site or reach as many

end users as possible, you’ll want to look into the OpenSocial APIs:

http://wiki.opensocial.org. OpenSocial uses common APIs (instead of site-specific

ones) to integrate with many popular social applications and services including the

following, which are in alphabetic order:

. friendster (still popular in Southeast Asia)

. hi5 (popular in Europe and Central and South America)

. Hyves (popular in the Netherlands)

. LinkedIn (business networking)

. Mail.ru (popular in Russia)

. mixi (popular in Japan)

. MySpace (popular in the United States and worldwide)

. Netlog (popular in Europe and the Middle East)

. orkut (popular in South America and India)

. RenRen (formerly Xiaonei, popular with students in China)

. Yahoo! (popular in the United States and worldwide)

. XING (business networking, popular in Europe and China)

Each of these social networks has daily and monthly active users in the millions.

http://developers.facebook.com
http://developers.facebook.com
http://wiki.developers.facebook.com/index.php/Mobile
http://wiki.developers.facebook.com/index.php/Mobile
http://apiwiki.twitter.com
http://wiki.opensocial.org

ptg

302 HOUR 17: Adding Social Features

Summary
In this hour, you learned how social features can be used to enhance the user expe-

rience of a mobile application. You worked through a short example of how to add

social features to the Been There, Done That! application by adding the ability for a

user to specify friends (by email address) and view friends’ scores. Finally, you

learned about many of the third-party social networking services you can consider

integrating your application with.

Q&A
Q. How do I determine the best unique identifier to distinguish users?

A. Despite a number of initiatives to implement single-login services, there is still

not a great answer to this question. Some candidates are unique

username/password pairings, email addresses, or phone numbers. In the

example in this hour, we relied on the email address of the player as a unique

identifier, and we allowed the user to set up a password. Many social network-

ing sites use a similar mechanism, but this approach is not without prob-

lems—for example, email addresses change, users may have more than one

account, and they have to keep track of yet another login and password com-

bination. When you’re integrating with a social networking website, you need

to use whatever authentication and credentials are required by the site’s API.

Q. What are some of the privacy concerns I should consider when developing
social applications?

A. When it comes to social applications, you should always include information

about how you’ll use any information supplied by the user. You’re going to be

safest when you follow these principles: Don’t access, use, or store any infor-

mation your application doesn’t require and do assume that any and all

information supplied by the user is private. Now, by this definition, even the

lightweight friend support you added to the Been There, Done That! applica-

tion is sharing private data: the user’s nickname, score, and avatar. (See the

exercises for accessing friends’ avatar images from the server.) Technically, if

you published this application, you would want to make it very, very clear to

the player that this information is going to be uploaded to the application

server and accessible to other players.

ptg

303Workshop

Q. How do I find out if my application can integrate with a social network
application that’s not listed in this hour?

A. Whether you want to integrate with a social networking service or some other

web service (for example, Google, Amazon, eBay), the simplest way to find out

if a service has an API is to browse the company’s website. There you will

often find a link for developers near the information about customer support,

contact, and company information or within the customer support FAQ. Most

companies require developers to agree to terms of use, and some companies

require you to register for a special API key to use the services.

Workshop

Quiz
1. True or False: All Android applications can and should be enhanced using

social features.

2. How does the Been There, Done That! application create friend relationships?

A. By allowing the player to search the application server for friends he or she

recognizes

B. By allowing the player to input a friend’s email address

C. By launching the Contacts application and allowing the player to choose a

contact

D. By allowing the player to input a friend’s phone number

3. True or False: The Android SDK has built-in support for social networking sites

such as Facebook, Twitter, and MySpace.

ptg

304 HOUR 17: Adding Social Features

Answers
1. False. Adding social features to an application can enhance the experience for

users, but this is a design decision that requires thought and planning. Some

types of applications benefit greatly from these features, while others may not.

Add social features to an application only when doing so provides a clear ben-

efit to both users and the developer.

2. B. Players can add friends in the Been There, Done That! application by

inputting their email addresses. The application server tries to match each

email address entered to an existing player. If the player exists, then a friend

relationship is established.

3. False. You can use the networking features of the Android SDK to access the

developer APIs provided by third-party social networking sites such as

Facebook, Twitter, and MySpace.

Exercises
1. Modify the Scores of Friends tab of the scores screen to display each friend’s

avatar as well as each score. (Hint: The URL for each friend’s avatar is includ-

ed in the XML score data downloaded from the application server.)

2. Modify the scores screen to add another tab, showing the scores of players

who have added this player as a friend (in other words, players who are

watching this player’s score). The application server has the appropriate query

implemented. Use the same URL but add the variable followers and set it to

the string true (for example,

“http://tqs.mamlambo.com/scores.jsp?playerId=##&followers=true”).

3. Review the development API documentation of the third-party social network-

ing service of your choice. Consider implementing a simple feature for the

Been There, Done That! application which accesses that networking service in

an interesting way. For example, you might post a tweet to the player’s Twitter

feed each time that player answers a quiz question in the affirmative (for

example, “Player X has climbed Mount Everest!”).

4. Add a feature to send a text message to the user’s friend to challenge him or

her to beat the user’s score.

http://tqs.mamlambo.com/scores.jsp?playerId=##&followers=true

ptg

HOUR 18

Creating a Home Screen
App Widget

What You’ll Learn in This Hour:
. Designing and implementing an App Widget
. Handling App Widget user events
. Working with services

In this hour, you will create an App Widget for the Been There, Done That! application.

Specifically, you will create a simple App Widget control that can be added to the user’s

Home screen to display the user’s avatar, nickname, and score information and remind

them to continue playing the game.

Designing an App Widget
The Android SDK provides developers with an interesting way to provide functionality out-

side the traditional boundaries of a mobile application: by using App Widgets. Developers

can use the App Widget API to create mini controls or views that can be added to the

user’s Home screen. These simple controls can provide a user with information about the

application and remind the user to launch the application when necessary.

App Widgets can be useful for certain types of applications, such as those that might need

to inform the user of some status or update. A weather application might include an App

Widget that displays the current weather conditions at the given location on the Home

screen. A task management application might include an App Widget that informs the

user of the next task on his or her to-do list or how many tasks are left for the day. A pic-

ture gallery application might include an App Widget that acts as a slideshow of all the

pictures stored in the gallery.

ptg

Did you
Know?

306 HOUR 18: Creating a Home Screen App Widget

In this lesson, you will create a simple App Widget for the Been There, Done That!

application. This App Widget will do the following:

. Display the user’s avatar

. Display the user’s nickname

. Display the user’s current score

. Launch the Been There, Done That! application when clicked

Defining App Widget Properties
App Widget definition and configuration properties are defined in a separate XML

file and are then referenced from within the Android manifest file. (We’ll get to that

in a moment.)

The following are some of the common properties used to define an App Widget:

. Size—The width and height dimensions of the App Widget, defined in

density-independent pixels (dp or dip), which correspond to the number of

Home screen grid cells the App Widget will require to display correctly.

The Android Home screen is organized in grid cells that usually correspond to a
square of 74×74 pixels. Only one item, such as an App Widget or application
shortcut, can sit in any cell. This way, items on the Home screen do not overlap.

. Update Frequency—The time (in milliseconds) between system calls to the

App Widget provider to update the contents of the App Widget.

. Initial Layout—A layout file to use when the App Widget is initially added.

This can be changed in code later.

. Configuration Activity—The definition for an activity to launch to config-

ure various aspects of the App Widget before it is first displayed.

To add an App Widget definition for this example, start by adding a new XML file

called widget_info.xml under the /res/xml folder. In this file, place the following App

Widget definition:

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider

xmlns:android=”http://schemas.android.com/apk/res/android”
android:minWidth=”146dp”

ptg

Designing an App Widget 307

android:minHeight=”146dp”
android:updatePeriodMillis=”10800000”
android:initialLayout=”@layout/widget”>

</appwidget-provider>

This definition file defines an App Widget that will update every three hours and be

2×2 grid cells in size. If you’ve done the math, you may have noticed that the 146dp

on each edge is not double the 74dp we previously defined a grid cell size to be.

Although a grid cell is typically considered 74dp on edge, when calculating the size,

you must subtract 2dp from the final result. In this example, we multiplied 74 by 2

to get 148. Then, we subtracted 2 from it to get to the 146 we put in the file. Without

this, the App Widget may not draw in the expected number of cells.

This App Widget will receive update calls every 10,800,000 milliseconds, which cor-

responds to three hours. In addition, this App Widget will initially use a predefined

layout, referenced by android:initialLayout=”@layout/widget”. The contents of this

layout file will be discussed shortly.

Updating the Android Manifest File
The Android manifest file needs to be updated to tell the system where to find the

definition of the App Widget. An App Widget is a specialized form of a

BroadcastReceiver control.

Therefore, a <receiver> definition must be placed within the AndroidManifest.xml file

that defines what Intent objects will be received and a couple other pieces of data

specific to the App Widget.

To accomplish this task, add the following <receiver> section to the application sec-

tion of the AndroidManifest.xml file:

<receiver
android:name=”QuizWidgetProvider”>
<intent-filter>

<action
android:name=”android.appwidget.action.APPWIDGET_UPDATE” />

</intent-filter>
<meta-data

android:name=”android.appwidget.provider”
android:resource=”@xml/widget_info” />

</receiver>

This <receiver> segment of the Android manifest file defines an intent filter for App

Widget updates. In addition, it ties the App Widget, and its definition file, to the

overall application.

ptg

308 HOUR 18: Creating a Home Screen App Widget

Designing the App Widget Layout
App Widgets have specific layout requirements. To begin with, an App Widget is

drawn through the RemoteViews interface, which limits the user interface that can be

displayed. Next, the App Widget must conform to the size configured in its proper-

ties.

A RemoteViews object is used when the actual display of a view will be performed

from within another process. This is exactly what happens with an App Widget: It is

displayed in the App Widget host process, not the application’s main process.

RemoteViews objects are limited in the layout and view objects they may use. Some

layout and view objects supported within App Widgets include the following:

. LinearLayout

. FrameLayout

. RelativeLayout

. TextView

. ImageView

. Button

. ImageButton

. ProgressBar

. AnalogClock

. Chronometer

Classes extending these controls cannot be used. This means that the design of the

layout is very limited. App Widgets are not meant to display much information,

though, and the customary way of enhancing the features of an App Widget is to

trigger the launch of full activity when more powerful features or complex screens

are required. This functionality could be used to draw an entire screen or be limited

to just a popup screen. Either way, activities launched from an App Widget no

longer carry the limitations that an App Widget has from the required use of a

RemoteViews object.

To design a layout for the App Widget, create a new layout file called widget.xml,

and place the following code in it:

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout

xmlns:android=”http://schemas.android.com/apk/res/android”
android:layout_width=”wrap_content”

ptg

Designing an App Widget 309

android:layout_height=”wrap_content”
android:id=”@+id/widget_view”>
<ImageView

android:layout_centerInParent=”true”
android:layout_height=”fill_parent”
android:layout_width=”fill_parent”
android:id=”@+id/widget_image”></ImageView>

<TextView
android:text=”@+id/TextView01”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_alignParentTop=”true”
android:layout_centerHorizontal=”true”
android:id=”@+id/widget_nickname”></TextView>

<TextView
android:text=”@+id/TextView02”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_centerHorizontal=”true”
android:layout_alignParentBottom=”true”
android:id=”@+id/widget_score”></TextView>

</RelativeLayout>

Implementing an App Widget Provider
Now that the configuration is in place, you need to implement the App Widget. To

do this, you need to extend the AppWidgetProvider class, which contains five methods

that can be overridden:

. onUpdate()—This method is called at each update interval.

. onDeleted()—This method is called each time an App Widget is deleted.

. onEnabled()—This method is called the first time an App Widget is created, but

not subsequent times.

. onDisabled()—This method is called when the last instance of an App Widget

is deleted.

. onReceive()—This method is called for all received broadcast events; the

default implementation calls each of the previous callback methods (e.g.

onUpdate(), onDeleted(), onEnabled(), and onDisabled()) when necessary. This

method can be overridden when advanced behavior is required.

For this example, you only need to override the onUpdate() method to update

the RemoteViews object. No persistent setup is needed, so you don’t need to

override any of the other methods. That said, here’s the implementation of the

AppWidgetProvider class:

ptg

310 HOUR 18: Creating a Home Screen App Widget

public class QuizWidgetProvider2 extends AppWidgetProvider {
@Override

public void onUpdate(Context context,
AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

WidgetData widgetData = new WidgetData(“Unknown”, “NA”, “”);
getWidgetData(widgetData);
String packageName = context.getPackageName();
RemoteViews remoteView =

new RemoteViews(context.getPackageName(), R.layout.widget);
remoteView.setTextViewText(

R.id.widget_nickname, widgetData.nickname);
remoteView.setTextViewText(

R.id.widget_score, “Score: “ + widgetData.score);
if (widgetData.avatarUrl.length() > 0) {

URL image;
try {

image = new URL(widgetData.avatarUrl);

Bitmap bitmap =
BitmapFactory.decodeStream(image.openStream());

if (bitmap == null) {
Log.w(DEBUG_TAG, “Failed to decode image”);
remoteView.setImageViewResource(

R.id.widget_image, R.drawable.avatar);
} else {

remoteView.setImageViewBitmap(
R.id.widget_image, bitmap);

}
} catch (MalformedURLException e) {

Log.e(DEBUG_TAG, “Bad url in image”, e);
} catch (IOException e) {

Log.e(DEBUG_TAG, “IO failure for image”, e);
}

} else {
remoteView.setImageViewResource(

R.id.widget_image, R.drawable.avatar);
}

try {
ComponentName quizWidget =

new ComponentName(context, QuizWidgetProvider.class);
AppWidgetManager appWidgetManager =

AppWidgetManager.getInstance(context);
appWidgetManager.updateAppWidget(quizWidget, remoteView);

} catch (Exception e) {
Log.e(DEBUG_TAG, “Failed to update widget”, e);

}
}

private void getWidgetData(WidgetData widgetData) {
}

}

ptg

Designing an App Widget 311

At this point, you need to get the data that will be displayed in the App Widget. The

getWidgetData() method handles this by getting the player identifier from

SharedPreferences and then downloading the data from the server. You handle the

operation this way instead of loading this data straight from SharedPreferences so

that you can switch it later to support loading data from friends or other players.

Next, you build up the RemoteViews object. The initialization requires not only the

layout to use but also the package for where the layout comes from. Recall that a

RemoteViews object will not be displayed in the same process, so more information is

needed in order for it to access the resources.

You have access to the nickname and score information (or suitable default values),

so you can set those via the setTextViewText() method, passing in both the identifier

from the layout and the value. The code for the avatar image is similar but first ver-

ifies that a suitable URL for the avatar is available and that the image can be

decoded. Finally, either the setImageViewBitmap() or setImageViewResource() method

is called to apply the avatar image to the RemoteViews object.

Finally, you have to actually update the App Widget. You do this via a call to the

updateAppWidget() method of AppWidgetManager. It requires both the RemoteViews

object and the Android ComponentName object of the QuizWidgetProvider, retrieved by

instantiating that class directly.

By the
Way

If you were paying close attention, you may have noticed that you didn’t use two of
the onUpdate() parameters: appWidgetManager and appWidgetIds. The
appWidgetManager parameter isn’t used because you’ll be moving the code to a dif-
ferent method shortly, where an instance of it will be retrieved separately. The
appWidgetIds parameter is used when you want to support multiple unique App
Widgets that show different data. In that case, the application must track the
appWidgetIds values, which are assigned by the system, separately and pair
them correctly to the data that needs to be shown in each App Widget. Typically,
this is done using a distinct configuration activity for each App Widget so the user
controls what they want displayed in each different instance of this App Widget.

The App Widget should now appear in the Home screen’s App Widget interface, as

shown in Figure 18.1.

ptg

312 HOUR 18: Creating a Home Screen App Widget

FIGURE 18.1
Adding the App
Widget to the
Home screen.

▼ Try It Yourself
To add an App Widget to the Home screen of an Android phone or the emulator,

follow these easy steps:

1. Navigate to the Home screen.

2. Find a suitably empty area of the screen. (Remember that the App Widget

needs 2×2 grid cells.)

3. Click and hold your finger (or the mouse button on the emulator) over the

area where you want to add the App Widget.

4. When the pop-up menu appears, choose Add to Home Screen, Widgets.

5. Select the App Widget you just created (or any other App Widget) from the list

and add it to your Home screen.

At this point, the App Widget looks as shown in Figure 18.2.

▲

ptg

Handling App Widget User Events 313

Handling App Widget User Events
As it stands, the App Widget works but isn’t terribly interactive. You don’t want it to

just display information to the user; you want it to also bring the user back to the

application. Another area where the App Widget might be improved is to make it

handle slow avatar image downloads gracefully.

App Widgets are displayed through RemoteViews objects and not within the applica-

tion where they are created. Instead, they are displayed within an App Widget host.

This affects the handling of user input. Recall that the list of views that an App

Widget supports did not include any user input fields. Basically, the only event that

an App Widget supports is a click event.

FIGURE 18.2
The Been There,
Done That! App
Widget.

By the
Way

You may have seen a number of App Widgets, such as the Facebook App Widget,
present what look like EditText fields. However, if you click on them to enter text,
you’ll notice that in all cases, a different UI comes up to actually take the entry.
This method is an excellent way to provide advanced controls within the limita-
tions of the App Widget framework.

Because the App Widget isn’t displayed in the same process as the application, a

new method is needed for getting the click event. The Android SDK provides an

ptg

314 HOUR 18: Creating a Home Screen App Widget

Intent type known as PendingIntent for this purpose. This is an Intent that will basi-

cally be sent at a future time and can be sent by another process. To create a

PendingIntent, an Intent instance must first be created. Then the PendingIntent is

created with some additional information, such as what to do on subsequent uses of

the same Intent. That is, the exact same instance could be used, or a new instance

could be created. Once the PendingIntent object is created, it can be assigned to the

RemoteViews object via a call to the setOnClickPendingIntent() method. You need to

add the code for this must before the call to the updateAppWidget() method:

Intent launchAppIntent =
new Intent(context, QuizMenuActivity.class);

PendingIntent launchAppPendingIntent =
PendingIntent.getActivity(context, 0, launchAppIntent,
PendingIntent.FLAG_UPDATE_CURRENT);

remoteView.setOnClickPendingIntent(
R.id.widget_view, launchAppPendingIntent);

The view identifier that the PendingIntent is added to via the call to the

setOnClickPendingIntent() method is the RelativeLayout object from the

widget.xml layout file. Now when the App Widget is clicked, QuizMenuActivity is

launched; this happens to be the normal launch activity of the Been There, Done

That! application. (Note that any activity could be launched, such as the high

scores, but this one makes the most sense.)

Did you
Know?

When you create a dynamic App Widget, individual views could have their own
PendingIntent objects assigned. This way, the actions they send cause an
updateAppWidget() method call to change the look of the App Widget in response
to the click.

Working with Widget Background
Operations
You might think that because the App Widget doesn’t run within the application

process, you don’t have to worry about operations taking too long. You might also

think that because the App Widget is a BroadcastReceiver object, it will automatical-

ly perform its actions in the background. In both cases, you’d be wrong.

For lengthy operations, the general solution is to launch a separate thread to handle

things. However, for App Widgets, this isn’t feasible. Instead, you must create and

launch an Android Service instance and then, from the service, you can launch a

background thread. An Android service can provide two useful operations: It can

provide background processing, and it can provide an interface to a remote object,

such as providing access to extensions or software libraries.

ptg

Working with Widget Background Operations 315

By the
Way

Why can’t a Thread class be used directly from an App Widget? Although the full
details are beyond the scope of this book, the simple answer is that when pro-
cessing returns from the onUpdate() method, the App Widget process may go
away, destroying any running threads. An Android Service instance won’t go away,
though, so you can use it to run background operations.

You can see all the services currently running on an Android handset or emulator

by selecting Settings, Applications, Running Services. From here, you can choose to

stop services, as well. Figure 18.3 shows the Running Services screen.

FIGURE 18.3
The Running
Services
screen.

Creating a Service
A Service object is created by extending the Service class, overriding three primary

methods, and defining the service within the AndroidManifest.xml file. For the Been

There, Done That! App Widget, you must define the Service object within

QuizWidgetProvider. Then you can move the bulk of the onUpdate() code to the

onStartCommand() method of the Service object and create a Thread object to do the

work so the App Widget and service are responsive.

ptg

316 HOUR 18: Creating a Home Screen App Widget

Did you
Know?

Did you
Know?

The full implementation of the App Widget can be found in the code provided on
the website for this book, http://www.informit.com/title/9780321673350.

Now the Android manifest file needs to be updated so the system knows about this

service. To do this, add a <service> block to the <application> section of the manifest

file, like this:

The life cycle of a Service is different from that of an Activity class. Because
the example here has been simplified, you are not exploring the complete life
cycle of a service. However, generally speaking, the onCreate() method is called,
followed by either the onStartCommand() or onBind() method, depending on the
type of service and how it was started. When the service is finished, either
because it is or there is no process bound to it, the onDestroy() method is
called.

At this point, put the following code in to the QuizWidgetProvider class:

public static class WidgetUpdateService extends Service {
Thread widgetUpdateThread = null;
private static final String DEBUG_TAG = “WidgetUpdateService”;

@Override

public int onStartCommand(Intent intent, int flags, final int startId) {
widgetUpdateThread = new Thread() {

public void run() {
// code moved from onUpdate() method

}
};
widgetUpdateThread.start();
return START_REDELIVER_INTENT;

}

@Override

public void onDestroy() {
widgetUpdateThread.interrupt();
super.onDestroy();

}

@Override

public IBinder onBind(Intent intent) {
// no binding; can’t from an App Widget
return null;

}
}

This is the service implementation, as it would appear after moving the code from

the onUpdate() method to the run() method of the thread created in the

onStartCommand() method.

http://www.informit.com/title/9780321673350

ptg

Working with Widget Background Operations 317

<service
android:name=”QuizWidgetProvider$WidgetUpdateService” />

This tells the system that there is a service and where to find it.

Controlling the Service
You now need to start the service from within the App Widget onUpdate() method.

You can start a service in one of two ways: either through a call to the

Context.startService() method or through a call to the Context.bindService()

method. In this case, you use the startService() method by replacing the onUpdate()

method with the following code:

@Override

public void onUpdate(Context context,
AppWidgetManager appWidgetManager, int[] appWidgetIds) {
Intent serviceIntent = new Intent(context, WidgetUpdateService.class);
context.startService(serviceIntent);

}

When a service has finished, it’s a good idea to stop it to free up valuable resources.

The App Widget will update only once every three hours. Although you could leave

the service around—doing nothing—you might as well stop it until it is needed

again. This is accomplished by placing the following call at the end of the run()

method of the Thread class you use to perform the background tasks:

if (!WidgetUpdateService.this.stopSelfResult(startId)) {
Log.e(DEBUG_TAG, “Failed to stop service”);

}

This call to the stopSelfResult() method tells the service to stop itself and returns

whether or not the call was successful. If you don’t care about the result, simply call

the stopSelf() method instead. This method call is made when the processing is fin-

ished within the thread since there is no reason for the service to keep running, as it

has no further actions to perform, in this case. The service can be launched again

the next time the App Widget updates which, for this App Widget, is after three

hours have elapsed.

If the App Widget is removed from its host, such as the Home screen, while an

update is taking place, the service will need to be terminated in a different way. To

accomplish this, put the following code for the onDeleted() method into the

AppWidgetProvider implementation:

@Override

public void onDeleted(Context context, int[] appWidgetIds) {
Intent serviceIntent = new Intent(context, WidgetUpdateService.class);
context.stopService(serviceIntent);
super.onDeleted(context, appWidgetIds);

}

ptg

318 HOUR 18: Creating a Home Screen App Widget

The call to the stopService() method triggers a call to the onDestroy() method of the

Service class implementation, which then attempts to interrupt the thread to stop it.

By the
Way

The example in this hour is pretty simple. It will work fine for a single instance of
the App Widget. However, if you want to support multiple instances of the App
Widget running simultaneously, further code is needed to handle the differentia-
tion between instances.

Summary
In this hour, you built a simple App Widget for the Been There, Done That! applica-

tion to display the user’s avatar, nickname, and score. This hour covered all the

implementation details of App Widget development, including designing the layout

and defining the App Widget properties. You also added some simple event han-

dling, allowing the user to click the App Widget to launch the Been There, Done

That! application. Finally, you used a background service to handle processing of

App Widget events and updates.

Q&A
Q. Is the Home screen the only place I can include App Widget controls?

A. No. Any App Widget host can hold App Widget controls. The Home screen is

simply the place you’ll most commonly see App Widgets used. See the docu-

mentation for AppWidgetHost and AppWidgetHostView for more details.

Q. How do I add more interactive features, such as Button controls, to an App
Widget?

A. If you want to add configuration controls to an App Widget and allow the

user to trigger updates to the App Widget content, you need to define each

event separately and implement the appropriate click handlers to send specific

event commands, via PendingIntent objects, to a registered receiver of the

Intent objects. Then the App Widget application needs to receive the com-

mands and process them accordingly, updating the App Widget content as

necessary. You can find a complete example of an interactive App Widget pro-

vided in our article “Handling User Interaction with Android App Widgets,”

available at http://www.developer.com/ws/article.php/3837531/Handling-

User-Interaction-with-Android-App-Widgets.htm.

http://www.developer.com/ws/article.php/3837531/Handling-User-Interaction-with-Android-App-Widgets.htm
http://www.developer.com/ws/article.php/3837531/Handling-User-Interaction-with-Android-App-Widgets.htm

ptg

319Workshop

Q. Can I have multiple instances of an App Widget?

A. Having multiple instances doesn’t make sense with the App Widget you

implemented for the Been There, Done That! application. However, in certain

instances, it might make sense to allow the user to have multiple instances of

an App Widget with different configurations. One way to accomplish this is to

allow the user to configure each App Widget instance using the configuration

activity defined for the App Widget. Then, the application must keep track of

the differences between the instances by keeping track of the user configura-

tion activity for each App Widget identifier. We also cover this advanced topic

in our article “Handling User Interaction with Android App Widgets” (see the

previous Q&A for details).

Workshop

Quiz
1. True or False: App Widgets can reside only on the Home screen.

2. Which of the following is an example of a View widget that cannot be used

with an App Widget?

A. Button

B. WebView

C. ProgressBar

3. True or False: Although App Widgets are defined in pixels, their size must cor-

respond directly to a certain number of cells.

4. For what reason is a service used in an App Widget?

A. To handle lengthy background operations

B. To handle drawing directly on the screen

C. To access private data

ptg

320 HOUR 18: Creating a Home Screen App Widget

Answers
1. False. App Widgets can reside within an application that implements an

AppWidgetHost object.

2. B. Both Button and ProgressBar can be used, but not WebView.

3. True. Each cell is typically defined as 74 pixels, but when adding up the num-

ber for multiple cells, 2 pixels are subtracted. Thus, 2 cells wide would be

(74×2) – 2, or 146 pixels.

4. A. An App Widget runs in another process so must be responsive to requests.

A thread can’t be used because it might be killed when the App Widget

returns. Therefore, a service is started to perform background processing.

Exercises
1. Modify the App Widget in the Been There, Done That! application to show

information about a friend. (The XML returned for the friend’s scores contains

the nickname, score, rank, and avatar URL.)

2. Add a configuration activity that allows the user to choose which friend to

show.

3. Continuing with the previous two exercises, modify the App Widget to allow

multiple instances, one showing the user’s data and the other showing a

friend’s data.

ptg

HOUR 19

Internationalizing Your
Application

What You’ll Learn in This Hour:
. Languages supported by the Android platform
. Managing strings and other resources
. Localized formatting utilities
. Other internationalization concerns

The mobile marketplace is global—serving a variety of users in many countries and many

locales. Developers need to keep this in mind when designing and developing applications

for the Android platform; applications will likely be used by foreign-speaking users. In this

hour, you learn about the localization features of the Android platform and the Android

Market.

By the
Way In Hour 24, “Publishing on the Android Market,” you’ll learn how your application can be

made available for distribution within the Android Market.

General Internationalization Principles
With a global marketplace, developers can maximize profits and grow their user base by

supporting a variety of different languages and locales. Let’s take a moment to clarify

some terms. While you likely know what we mean by language, you may not be aware

that each language may have a number of different locales. For example, the Spanish

spoken in Spain is quite different from that spoken in the Americas, the French spoken in

Canada differs from that of Europe and Africa, and the English spoken in the United

States differs from that spoken in Britain. English is a language, while English (United

States), English (United Kingdom), and English (Australia) are locales (see Figure 19.1).

ptg

322 HOUR 19: Internationalizing Your Application

FIGURE 19.1
People who
speak the same
language often
have localized
dialects.

Hi!Hello!G'day!

AmericanBritishAustralian

Applications are made up of data and functions (behavior). For most applications,

the behavior is the same, regardless of the locale. However, the data must be local-

ized. This is one of the key reasons resource files exist—to externalize application

data.

The most common type of application data that requires localization is the strings

of text used by the application. For example, a string of data might represent a

user’s name, but the text label for that value on an application screen would need

to be shown in the proper language (for example, Name, Nom, Nombre).

Development platforms that support internationalization typically allow for string

tables, which can be swapped around so that the same application can target differ-

ent languages. The Android platform is no exception.

Watch
Out!

Do not hard code string information into an application (that is, the Java source
file) unless absolutely necessary. Doing so hinders internationalization efforts.

How Android Localization Works
Compared to other mobile platforms, the Android SDK provides reasonably exten-

sive support for internationalization. However, this is a fairly complex topic with lots

of caveats—and the Android documentation in this area is virtually nonexistent.

Android localization considerations fall into three main categories:

. The languages and locales supported by the Android platform (an extensive

list—the superset of all available languages)

. The languages and locales supported by a specific Android handset (a list that

varies—a subset of languages chosen by a handset manufacturer or operator)

ptg

How Android Localization Works 323

. The countries, languages, and locales supported by the Android Market appli-

cation (the countries and locales where Google can sell legally; this list grows

continuously)

The specific locales supported by Android (as of this writing) are shown in

Table 19.1.

TABLE 19.1 Languages and Regions Supported in Android

Language Regions

Chinese (zh) PRC (zh_CN)

Taiwan (zh_TW)

Czech (cs) Czech (cs_CZ)

Dutch (nl) Netherlands (nl_NL)

Belgium (nl_BE)

English (en) United States (en_US)

Britain (en_GB)

Canada (en_CA)

Australia (en_AU)

New Zealand (en_NZ)

Singapore (en_SG)

French (fr) France (fr_FR)

Belgium (fr_BE)

Canada (fr_CA)

Switzerland (fr_CH)

German (de) Germany (de_DE)

Austria (de_AT)

Switzerland (de_CH)

Liechtenstein (de_LI)

Italian (it) Italy (it_IT)

Switzerland (it_CH)

Japanese (jp) Japan (jp_JP)

Korean (ko) South Korea (ko_KR)

Polish (pl) Poland (pl_PL)

Russian (ru) Russia (ru_RU)

Spanish (es) Spain (es_ES)

ptg▼

324 HOUR 19: Internationalizing Your Application

How the Android Operating System Handles
Locale
Much like other operating systems, the Android platform has a system setting for

locale. This setting has a default setting that can be modified by the mobile opera-

tor. For example, a German mobile operator might make the default locale Deutsch

(Deutschland) for its shipping handsets. An American mobile operator would likely

set the default locale to English (American) and also include an option for the locale

Español (Estados Unidos)—thus supporting American English and Spanish of the

Americas.

A user can change the system-wide setting for locale in the Settings application. The

locale setting affects the behavior of applications installed on the handset.

Try It Yourself
To change the locale on a handset, perform the following steps:

1. From the Home screen, click the Menu button and choose Settings.

2. From the Settings menu, select the Language & Keyboard option.

3. Choose Select Locale and select a locale. The Android platform immediately

changes the locale on the system. For example, if you choose Español, you see

that many of the menus on the Android platform are now in Spanish.

Take care to remember these steps, as you will have to navigate back to the

locale settings in the foreign language you chose.

How Applications Handle Locales
Now let’s look at how the system-wide locale setting affects each Android applica-

tion. When an Android application uses a project resource, the Android operating

system attempts to match the best possible resource for the job at runtime. In many

cases, this means checking for a resource in the specific language or regional locale.

If no resource matches the required locale, the system falls back on the default

resource.

Did you
Know?

The locales are likely to be enhanced. The latest list of locales can be viewed at
http://developer.android.com/sdk/android-2.1.html#locs.

▲

http://developer.android.com/sdk/android-2.1.html#locs

ptg

How Android Localization Works 325

Developers can specify specific language and locale resources by providing resources

in specially named resource directories of the project. Any application resource can

be localized, whether it is a string resource file, a drawable, an animation sequence,

or some other type.

Specifying Default Resources
So far, every resource in the Been There, Done That! application is a default

resource. A default resource is simply a resource that does not have specific tags for

loading under different circumstances.

Default resources are the most important resources because they are the fallback for

any situation when a specific, tailored resource does not exist (which happens more

often than not). In the case of the Been There, Done That! application, the default

resources are all in English.

Specifying Language-Specific Resources
To specify strings for a specific language, you must supply the resource under a spe-

cially named directory that includes the two-letter language code provided in ISO

639-1 (see www.loc.gov/standards/iso639-2/php/code_list.php). For example, English

is en, French is fr, and German is de. Let’s look at an example of how this works.

Say that you want the Been There, Done That! application to support English,

German, and French strings. You would take the following steps:

1. Create a strings.xml resource file for each language. Each string that is to be

localized must appear in each resource file with the same name, so it will be

programmatically loaded correctly. Any strings you don’t want to localize can

be left in the default (English) /res/values/strings.xml file.

2. Save the French strings.xml resource file to the /res/values-fr/ directory.

3. Save the German strings.xml resource file to the /res/values-de/

directory.

Android can now grab the appropriate string, based on the system locale. However,

if no match exists, the system falls back on whatever is defined in the /res/values/

directory. This means that if English (or Arabic, or Chinese, or Japanese, or an unex-

pected locale) is chosen, the default (fallback) English strings will be used.

Similarly, you could provide a German-specific drawable resource to override one in

the default /res/drawable/ directory by supplying one with the same name in the

/res/drawable-de/ directory.

www.loc.gov/standards/iso639-2/php/code_list.php

ptg

326 HOUR 19: Internationalizing Your Application

Specifying Region-Specific Resources
You may have noticed that the previous example specifies high-level language set-

tings only (English, but not American English versus British English vs. Australian

English). Don’t worry! You can specify the region or locale as part of the resource

directory name as well.

To specify strings for a specific language and locale, you must supply the resource

under a specially named directory that includes the two-letter language code provid-

ed in ISO 639-1 (see http://www.loc.gov/standards/iso639-2/php/code_list.php), fol-

lowed by a dash, then a lowercase r, and finally the ISO 3166-1-alpha-2 region code

(see http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_

names_and_code_elements.htm). For example, American English is en-rUS, British

English is en-rGB, and Australian English is en-rAU. Let’s look at an example of how

this works.

If you wanted the Been There, Done That! application to support these three

versions of English, you could do the following:

1. Create a strings.xml resource file for each language. Any strings you don’t

want to localize can be left in the default (American English)

/res/values/strings.xml file.

2. Save the British English strings.xml resource file to the /res/values-

en-rGB/ directory.

3. Save the Australian English strings.xml resource file to the /res/

values-en-rAU/ directory.

To summarize, you start with a default set of resources—which should be in the

most common language your application will rely on. Then you add exceptions—

such as separate language and region string values—where needed. This way, you

can optimize your application so it runs on a variety of platforms.

Did you
Know?

For a more complete explanation of how the Android operating system resolves
resources, check out the Android developer website: http://developer.android.
com/guide/topics/resources/resources-i18n.html#best-match.

How the Android Market Handles Locales
The Android Market supports a subset of the locales available on the Android plat-

form. Because the Android Market uses the Google Checkout system for payments,

only countries where this online marketplace is legal can be supported for paid

applications.

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://developer.android.com/guide/topics/resources/resources-i18n.html#best-match
http://developer.android.com/guide/topics/resources/resources-i18n.html#best-match

ptg

Android Internationalization Strategies 327

For a complete list of the countries and languages supported by the Android Market,

see http://market.android.com/support/bin/answer.py?hl=en&answer=138294. Note

that the Android Market differentiates between countries that allow only free appli-

cations and countries where developers can distribute fee-based applications.

Did you
Know?

Developers must register to sell applications on the Android Market. A complete
list of countries where developers of free Android apps may reside (which is differ-
ent from where they may publish) is available at http://market.android.com/
support/bin/answer.py?hl=en&answer=136758.

Android Internationalization Strategies
Don’t be overwhelmed by the permutations available to developers when it comes to

internationalizing an application. Instead, give some thought to how important

internationalization is to your application during the design phase of your project.

Develop a strategy that suits your specific needs and stick to it.

Here are some basic strategies to handle Android application internationalization:

. Forgo internationalization entirely.

. Limit internationalization.

. Implement full internationalization for target audiences.

Now let’s talk about each of these strategies in more detail.

Forgoing Application Internationalization
Whenever possible, save your development and testing teams a lot of work—don’t

bother to internationalize your application. This is the “one size fits most” approach

to mobile development, and it is often possible with games and other simple,

graphic-intensive applications. If your application simple enough to work smoothly

with internationally recognized graphical icons (such as play, pause, stop, and so

on) instead of text labels, or “Sims” language (garbled mumbles that get the point

across to speakers of any language) then you may be able to forgo internationaliza-

tion entirely. However, this works only for a subset of applications. If your applica-

tion requires a help screen, for example, you’re likely going to need at least some

localization for your application to work well all over the world.

Some of the pros of this strategy are the following:

http://market.android.com/support/bin/answer.py?hl=en&answer=138294
http://market.android.com/support/bin/answer.py?hl=en&answer=136758
http://market.android.com/support/bin/answer.py?hl=en&answer=136758

ptg

328 HOUR 19: Internationalizing Your Application

. Simplified development and testing

. Smallest application size (only one set of resources)

Some of the cons of this strategy are the following:

. For text- or culture-dependant applications, this approach greatly reduces the

value of the application. It is simply too generic.

. This strategy automatically alienates certain audiences and limits your appli-

cation’s potential marketplaces.

Limiting Application Internationalization
Most applications require only some light internationalization. This often means

internationalizing string resources only, but other resources, such as layouts and

graphics, remain the same for all languages and locales.

Some of the pros of this strategy are the following:

. Modest development and testing requirements

. Streamlined application size (specialized resources kept to a minimum)

Some of the cons of this strategy are the following:

. Application may still be too generic for certain types of applications. Overall

design (especially screen design) may suffer from needing to support multiple

target languages. For example, text fields might need to be large enough to

support verbose languages such as German but look odd and waste valuable

screen real estate in less verbose languages.

. Because you’ve headed down the road of providing language-specific

resources, your users are more likely to expect other languages you haven’t

supported. In other words, you’re more likely to start getting requests for your

app to support more languages if you’ve supported some. That said, you’ve

already built and tested your application on a variety of languages, so adding

new ones should be straightforward.

Implementing Full Application Internationalization
Some types of applications require complete internationalization. Providing custom

resources for each supported language and locale is a time-intensive endeavor, and

ptg

Watch
Out!

Using Localization Utilities 329

you should not do it unless you have a really good reason to do so because the size

of the application grows as you include more resources. This approach often necessi-

tates breaking the individual languages into separate APK files for publication,

resulting in more complex configuration management. However, this allows a devel-

oper to tailor an application for each specific marketplace to a fine degree.

Some of the pros of this strategy are the following:

. The application is fully tailored and customized to individual audiences; this

strategy allows for tweaks to individual locales.

. It builds user loyalty by providing users with the best, most customized experi-

ence. (This is also a technique used by Google.)

Some of the cons of this strategy are the following:

. It is the most lengthy and complicated strategy to develop.

. Each internationalized version of the application must be fully tested as if it

were a completely different application (which it may well be, if you are

forced to split it into different APK files due to application size).

Beware of over-internationalizing an application. The application package size will
grow as you add language- and locale-specific resources. There is no reason to
head down this road unless you have a compelling reason to do so—and unless
you have the development, testing, and product team to manage it. Having a poor-
ly localized version of an application can be worse to your image than having no
localization at all.

Using Localization Utilities
The Android SDK includes support for handling locale information. For example,

the Locale class (java.util.Locale) encapsulates locale information.

Determining System Locale
If you need to modify application behavior based on locale information, you need

to be able to access information about the Android operating system. You can do

this by using the getConfiguration() method of the Context object, as follows:

Configuration sysConfig = getResources().getConfiguration();

ptg

330 HOUR 19: Internationalizing Your Application

One of the settings available in the Configuration object is the locale:

Locale curLocale = sysConfig.locale;

You can use this locale information to vary application behavior programmatically,

as needed.

Formatting Strings Like Dates and Times
Another aspect of internationalization is displaying data in the appropriate way. For

example, U.S. dates are formatted MM/DD/YY and December 8, 1975, whereas

much of the rest of the world uses the formats DD/MM/YY and 8 December, 1975.

The Android SDK includes a number of locale-specific utilities. For example, you can

use the DateFormat class (android.text.format.DateFormat) to generate date and

time strings in the current locale, or you can customize date and time information

as needed for your application.

Did you
Know?

You can use the TimeUtils class (android.util.TimeUtils) to determine the
time zone of a specified country by name.

Handling Currencies
Much like dates and times, currencies and how they are formatted differ by locale.

You can use the standard java Currency class (java.util.Currency) to encapsu-

late currency information. You can use the NumberFormat class

(java.text.NumberFormat) to format and parse numbers based on locale informa-

tion.

Summary
In this hour, you reviewed basic internationalization principles such as externalizing

project resources and knowing your target markets. You learned how the Android

platform handles different countries, languages, and locales. Finally, you learned

how to organize Android application resources for a variety of different countries

and regions, for maximum profit, using a number of different internationalization

strategies.

ptg

331Q&A

Q&A
Q. Which languages and locales should I target in my Android applications?

A. The answer to this question depends on a variety of factors and is something

of a numbers game. The short answer is this: the fewest you can get away

with. The number of mobile users who use a specific language should not be

the only factor in deciding which languages to support. For example, there

are many more Spanish- and Chinese-speaking mobile users than English-

speaking ones, but generally, English market users are willing to pay much

higher prices for applications. The answer really boils down to knowing your

user audience(s)—which should be part of your business plan to begin with.

Q. Why does my Android handset show only a subset of the languages and
locales listed in this hour?

A. While the Android platform supports a variety of languages and locales,

mobile handset manufacturers and operators can customize the locale support

available on specific devices. This may be done for resource efficiency. For

example, a phone available through a U.S. operator might support only

English (American) and Spanish (Americas).

Q. What language should I use for default resources such as strings?

A. Your default resources should be in the language/locale used by your largest

target audience—the most generic/likely values that will appeal to the most

users. If you’re targeting the world at large, the choice is often English, but it

need not be. For example, if your application allows turn-based directions

anywhere in China, then you’d probably want your default language/locale

to be one of the Chinese options (and even within China, different locale set-

tings are more widely used than others)—unless you were targeting business

types who are visiting China, in which case, you’re back to using English,

which is still the international language of business” (at least, for now).

Q. I changed the locale to Spanish. Why are some applications still displaying
in English?

A. If an application has its default strings in English and has no Spanish

resources available, then the defaults will be used, regardless of the language

chosen.

ptg

332 HOUR 19: Internationalizing Your Application

Workshop

Quiz
1. True or False: An Android application can support multiple languages within

a single APK file.

2. True or False: The number of languages supported by the Android platform

and the Android Market is fixed.

3. What language should your default resources be?

A. English

B. Chinese

C. The language that appeals most to your target audience

D. Another language

Answers
1. True. An application can be compiled with resources in several different lan-

guages. The Android platform can switch between these resources on-the-fly,

based upon the locale settings of the handset.

2. False. Android language support is being updated continuously. New lan-

guages and locales are being added all the time.

3. C. Your default resources should be the ones that are most likely to load and

be used. Therefore, it makes sense to design these resources to be in the lan-

guage and locale that appeals to the most number of users.

Exercises
1. Add a new set of string resource values to the Been There, Done That! applica-

tion in the language or locale of your choice. Test the results in the Android

emulator and on a real handset (if it supports the language/locale you chose).

2. Change the Been There, Done That! application so that it loads a custom

drawable or color resource for a specific language or locale. For example,

change the planet graphic on the main menu to something more specific to

that language/locale. Test the results in the Android emulator and on a real

handset (if it supports the language/locale you chose).

ptg

HOUR 20

Developing for Different
Devices

What You’ll Learn in This Hour:
. Designing for different handset configurations
. Handling screen orientation changes
. Working with different Android SDK versions

The Android platform is maturing at an accelerating rate. We’re seeing revisions of the

Android SDK rolling out every few months, with new handsets showing up all the time. In

this hour, you learn how to develop Android applications for different targets. Android

devices vary in terms of hardware and software features, as well as the version of the

Android SDK they run.

Configuration Management for Android
Developers must try to support the widest possible range of devices, without biting off

more than they can chew in terms of maintenance and configuration management. The

following are some factors to consider when determining target platforms:

. What hardware features will the application require? Does the application require a

touch screen? A hardware keyboard? A directional pad? Specific screen dimensions?

. What software features will the application require? Does the application support

different screen orientations?

. What Android SDK does the application require?

ptg

334 HOUR 20: Developing for Different Devices

While some of these decisions necessitate changes in the project libraries and the

Android manifest file, many can be handled using the same resource directory qual-

ifier strategy used for application internationalization.

Resource directories can be qualified to provide resources for a number of different

application configurations (see Table 20.1). You can apply these directory name

qualifiers to the resource subdirectories, such as /res/values/. Qualifiers are con-

catenated onto the existing subdirectory name, in a strict order, shown in prece-

dence order in Table 20.1. You can combine multiple qualifiers by separating them

with dashes. Qualifiers are always lowercase, and a directory can contain only one

qualifier of each type. Custom qualifiers are not allowed.

TABLE 20.1 Important Resource Directory Qualifiers

Directory Qualifier Type Values Comments

Language en, fr, es, zh, ISO 639-1 two-letter
ja, ko, de, language codes
and so on

Region/locale rUS, rGB, rFR, ISO 3166-1-alpha-2
rJP, rDE, region code in ALL
and so on UPPERCASE, preceded

by a lowercase r

Screen dimensions small, normal, Screen size and density
large ratio

Screen orientation port, land Portrait mode, landscape
mode

Screen pixel density ldpi, mdpi, hdpi, Screen density that
nodpi the resource is for

Touch screen type notouch, stylus, No Touch screen,
finger Stylus-only, Finger Touch

screen

Is keyboard available keysexposed, Keyboard available,
keyshidden, Keyboard not available to
keyssoft user, resources used

only with software
keyboard

Are navigation keys available navexposed, Whether navigational
navhidden keys are available or

hidden because phone
keypad is shut

ptg

Configuration Management for Android 335

Directory Qualifier Type Values Comments

Primary non-touch screen nonav, dpad, Four-key directional pad,
navigation method trackball, wheel trackball, scroll wheel

SDK version v1, v2, v3, v4, The SDK version’s API
v5, v6, v7, level (for example, v1 is
and so on Android SDK 1.0, while

v7 represents Android
SDK 2.1)

You can concatenate together resource directories by using dashes. Here are some

good examples of properly qualified directories:

/res/values-en-rUS-port-finger
/res/drawables-en-rUS-land
/res/values-en-qwerty

The following are some incorrectly qualified directories:

/res/values-en-rUS-rGB
/res/values-en-rUS-port-FINGER
/res/values-en-rUS-port-finger-custom

For an exhaustive list of the qualifiers available for resource customization (mobile

country code, carrier, screen size, and so on), see the Android developer website:

http://developer.android.com/guide/topics/resources/resources-

i18n.html#AlternateResources.

Handling Different Screen Orientations
Android applications can run in landscape or portrait mode, depending on how the

user tilts the handset screen. Besides internationalization, one of the most common

situations in which applications might want to customize resources is to handle

screen orientation changes.

Adding a Custom Layout for Landscape Mode
Thus far, you have been developing and testing the Been There, Done That! applica-

tion in portrait mode. Launch it now and change to landscape mode before launch-

ing the application. Review each screen. You’ll note that some screens display fine

(they have flexible layouts that work well in either landscape or portrait mode) and

some screens, such as the game screen (see Figure 20.1), could use some work.

http://developer.android.com/guide/topics/resources/resourcesi18n.html#AlternateResources
http://developer.android.com/guide/topics/resources/resourcesi18n.html#AlternateResources

ptg

By the
Way

336 HOUR 20: Developing for Different Devices

Modifying how a screen displays based on the orientation of the device is as simple

as adding a new set of layout resource files. To do this, you need to do the following:

. Use all currently defined layout resources as the defaults.

. Design a new version of each layout that also looks nice in landscape mode.

. Add these new landscape-specific layouts to the /res/layout-land/ directory.

Let’s give this a shot by providing two different versions of the game screen in the

Been There, Done That! application—one for portrait mode (the default) and one for

landscape mode.

The full layout implementation for the landscape mode changes and handset
differences discussed in this hour is available on the book’s website,
http://www.informit.com/title/9780321673350.

First, let’s review the design of the existing game.xml layout file, shown in Figure

20.2.

FIGURE 20.1
The game
screen in land-
scape mode
(default layout
used).

http://www.informit.com/title/9780321673350

ptg

Configuration Management for Android 337

In landscape mode, you just don’t have enough vertical space for the ImageView,

TextView, and Button controls. To streamline this layout for landscape mode, you

might consider putting the TextView control to the right of the ImageView control.

You could also modify the size of the graphic or the buttons if you needed to. The

same controls (with the same names) are defined in both versions of the layout file;

they’re just rearranged in the landscape version (see Figure 20.3).

FIGURE 20.2
The game
screen design
(default layout
version).

Icon Icon

IconIcon

Graphic

Yes No

TRIVIA QUESTION
HERE?

I
C
O
N

I
C
O
N

I
C
O
N

I
C
O
N

Yes No

Graphic
TRIVIA QUESTION

HERE?

FIGURE 20.3
The game
screen design
(custom land-
scape layout
version).

The resulting screen looks much nicer when you switch to landscape mode, as

shown in Figure 20.4.

ptg

338 HOUR 20: Developing for Different Devices

FIGURE 20.4
The game
screen in land-
scape mode
(landscape-
specific layout
used).

Watch
Out!

Because screen orientation changes cause the current activity to be restarted,
any processing tasks such as image decoding or network operations begin again
unless you implement the onRetainNonConfigurationInstance() method of the
Activity class. For more information on this type of situation, see the write-up at
the Android developer website: http://developer.android.com/resources/articles/
faster-screen-orientation-change.html.

Listening for Screen Orientation Changes
Applications can register to listen for screen orientation events. To do this, you

request SensorManager by using the getSystemService() method. You can then

query SensorManager for the current orientation, using the getOrientation()

method. Alternatively, you can implement the OrientationEventListener class

(android.view.OrientationEventListener) and override onOrientation

Changed() to register for orientation changes.

However, listening for orientation changes is necessary only when applications

require special internal handling of orientation. An application that defines a land-

scape layout resource in the /res/layout-land/ directory and a default portrait

layout resource in the /res/layout/ directory will work seamlessly, without the

need for a listener.

You can toggle the orientation of the emulator by pressing Ctrl+F11 and Ctrl+F12.Did you
Know?

http://developer.android.com/resources/articles/faster-screen-orientation-change.html
http://developer.android.com/resources/articles/faster-screen-orientation-change.html

ptg

Did you
Know?

Did you
Know?

Configuration Management for Android 339

Strategies for Handling Screen Orientation
The best way to support different orientations is to design simple enough layouts that

work in either portrait or landscape mode, without modifications. For example, the

settings screen of the Been There, Done That! application works fine in both land-

scape and portrait modes because each setting is stacked in a LinearLayout control,

within a scrolling area that can scale well to any size. However, some layouts, such

as the splash or game screen, may need some special tweaking for each orientation.

There are many strategies for supporting different screen sizes and orientations. Here

are some tips for developing layouts that work for multiple types of screens:

. Don’t crowd screens. Keep them simple.

. Use scalable container views such as ScrollView and ListView.

. Scale and grow screens in only one direction (vertically or horizontally), not

both.

. Don’t hard code the positions of screen elements. Instead, use relative posi-

tions and layouts, such as RelativeLayout.

. Avoid AbsoluteLayout and other pixel-specific layout settings.

. Use stretchable graphics, such as Nine-Patch.

. Keep resources as small as possible, so they load fast when the screen orienta-

tions change.

The Android developer website contains a helpful set of guidelines for supporting
multiple screens: http://developer.android.com/guide/practices/screens_
support.html.

Supporting Different Screen Characteristics
Android devices come with a wide variety of display settings, including different

screen sizes, densities, aspect ratios, and resolutions. Also, different devices have dif-

ferent default settings for display purposes, including themes and styles. Make sure

you run your application on all target platforms prior to release. Your application

will likely behave and display slightly differently on each device. Screen characteris-

tics are major design factors to consider when developing user interfaces.

You can create specific AVD profiles to mimic the behavior of specific screen char-
acteristics in the emulator using the Android SDK and AVD Manager.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

ptg

340 HOUR 20: Developing for Different Devices

Figure 20.5 shows how the same layout might appear different on different screens.

On the left, we have a generic medium density HVGA screen and on the right, we

have the Motorola Droid, which has a high density WVGA854 screen. Note the

rather marked differences.

FIGURE 20.5
A layout may
display different-
ly on different
devices.

Don’t despair, though. Fixing these sorts of problems is straightforward. Some ways

to prevent display problems associated with screen density and the like in the first

place include the following:

. Only set attributes you require (no unnecessary settings to maintain).

. Keep all dimension values in a dimension value resource file, not in individ-

ual layout files.

. Specify font sizes in dp or sp, as opposed to pt.

ptg

Configuration Management for Android 341

. Specify pixel dimensions in dp, as opposed to px.

. Add custom alternative resources when needed (but sparingly).

By making these changes to the Been There, Done That! project, we see that the

application now displays properly on a wider variety of devices, including the

Motorola Droid.

Supporting Different Handset Features
As you saw in Table 20.1, developers can provide custom resource files for a number

of different handset configuration situations. A game might customize certain

resources if the handset has no hardware keyboard or if the handset has a specific

type of touch screen or navigation pad. Graphics files may be enlarged for very

capable handsets with high-resolution screens, whereas on basic handsets they may

be reduced to save space. In extreme cases, a game may be 2D on one handset and

3D on another.

Developing for Different Android SDKs
At the time of this writing, there are six different versions of the Android SDK in

users’ hands: Android 1.1, Android 1.5, Android 1.6, Android 2.0, Android 2.0.1,

and Android 2.1. The upcoming releases (codenamed Froyo and Gingerbread) will

add to this list. From time to time, Google publishes a breakdown of the usage of

various Android versions on handsets:

. 0.1% of users are using Android SDK 1.1.

. 38.0% of users are using Android SDK 1.5.

. 31.6% of users are using Android SDK 1.6.

. 0.3% of users are using Android SDK 2.0.

. 2.7% of users are using Android SDK 2.0.1.

. 27.3% of users are using Android SDK 2.1.

This data was collected and provided online by the Android developer website dur-

ing the two weeks prior to April 4, 2010. You can check for updated statistics at the

following Android developer website: http://developer.android.com/resources/

dashboard/platform-versions.html. One particularly interesting factor is that some

versions of the SDK are effectively skipped by most devices, such as 2.0, because they

are quickly replaced, and updates (like 2.0.1 and 2.1) are pushed out to users. This

data can be invaluable for reducing testing load to just platforms where it matters.

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

ptg

Watch
Out!

342 HOUR 20: Developing for Different Devices

It may not be feasible for certain phones, especially older models, to receive the lat-

est firmware updates. As you can see, if you want to hit the broadest range of users,

you may need to develop for several different versions of the SDK. This data can be

invaluable for reducing the testing load to only those platforms where it matters.

Looking for new data, watching the market news, and surveying your target users

will all ultimately help you determine which devices to target.

Choosing an Application’s Target Platform
To appeal to the most users, you need to give some thought to your target platform

before you develop any Android application. Will your application support some of

the older, more established handsets or just the newest ones? Do some market

research and determine what versions of the SDK your target users are using in the

field.

Backward compatibility in the Android platform is not guaranteed. Developers have
experienced some rough patches when classes in the latest SDK are changed or
deprecated. For example, some applications written for Android SDK 1.5 were bro-
ken by the Android 1.6 release, and then they worked again in Android 2.0. This
can be very frustrating to developers and users.

Specifying a Project’s Target SDK
You can specify an application’s SDK support by compiling against the appropriate

SDK version, which is set in the project settings, as well as the Android manifest file.

You can also specify certain application resources to work with certain SDK versions,

by using the appropriate resource directory qualifiers listed in Table 20.1.

Designing Applications for Backward Compatibility
To target the largest number of handsets, you need to target multiple versions of the

SDK. However, setting required SDK versions in the Android manifest file limits the

versions of the SDK on which your application can be installed.

There is a workaround here, though. Because Java uses reflection, you can query

classes and methods without including them in the import statements. You could

therefore set the minimum SDK version to the lowest possible version that your

application can reasonably use. Then application logic can be used—by determin-

ing what’s actually available at runtime—to enhance any functionality or features

that are available. This method can also be used on devices that include specialized

features or functions not found on other devices but that your application may want

to leverage when they are available.

ptg

343

Did you
Know?

Q&A

A great example of how to use reflection to support multiple Android SDK versions
is available at http://developer.android.com/resources/articles/backward-
compatibility.html.

Detecting the Android SDK Programmatically
You can programmatically determine the version of Android by using the Build

class (android.os.Build). Specifically, you can check the Build.VERSION class’s

SDK_INT value, as defined in android.os.Build.VERSION_CODES.

Defining Android SDK–Specific Application Resources
Much as developers can provide resources for specific language, region, and handset

configuration options in applications, they can also provide resources for specific

versions of the Android SDK. Recall from Table 20.1 that resource paths can also

specify a particular Android API level number.

Summary
In this hour, you learned how to customize application resources for a variety of

handset configurations, including hardware and software requirements. You also

learned how to design applications to smoothly handle orientation changes. Finally,

you learned how to develop applications for a variety of Android SDK versions.

Q&A
Q. A firmware upgrade broke my application. What can I do?

A. First, dry your tears and delete that angry ranting email you were about to

send off to the Android development team. This kind of thing is annoying and

sometimes downright embarrassing, but it happens—a lot. In some cases, you

can avoid surprises like this by testing your application against the open

source project for the upcoming Android SDK release, but there’s no guarantee

that a specific handset (or operator) won’t modify the firmware release,

adding and removing features at will. Sometimes, you won’t know there’s a

problem until you get a complaint from someone in Sao Paulo or Beijing or,

perhaps most cringe-worthy, from your boss. Here, a solid response plan is a

must. Designate someone (poor sod) in advance to stay on top of Android SDK

releases—to fix bugs and to publish application updates to users.

http://developer.android.com/resources/articles/backward-compatibility.html
http://developer.android.com/resources/articles/backward-compatibility.html

ptg

344 HOUR 20: Developing for Different Devices

Q. How can I listen for orientation changes and load the appropriate portrait or
landscape layout so my application screens always look nice?

A. Your application does not have to listen for orientation changes to do this.

Instead, just make sure you have the appropriately qualified layout resources

(using the port or land qualifier). The Android operating system will auto-

matically load the appropriate layout whenever the orientation of the device

changes. As with any other resource, make sure the portrait and landscape

resources contain the same child views (so you don’t run into cases where a

referenced view is undefined in one orientation).

Workshop

Quiz
1. True or False: The following is a correctly qualified resource directory name:

/res/drawables-rUS-en.

2. For which of the following handset configurations can resources be defined?

A. Language and region/locale

B. Input methods, such as keyboards, touch screens, and navigation keys

C. Screen size, resolution, and orientation

D. Whether the keyboard and navigation keys are hidden

E. All of the above

Answers
1. False. The region must follow the language. Therefore, the directory would

appropriately be named /res/drawables-en-rUS.

2. E. All these qualifiers are available for application resources. There are also

others. For a complete list, see the list at the Android developer website

(http://developer.android.com/guide/topics/resources/resources-

i18n.html#AlternateResources).

http://developer.android.com/guide/topics/resources/resourcesi18n.html#AlternateResources
http://developer.android.com/guide/topics/resources/resourcesi18n.html#AlternateResources

ptg

Workshop 345

Exercises
1. Test the Been There, Done That! application on a handset. Change to land-

scape mode and ensure that all screens of the application display correctly.

Add landscape-specific layout resources where needed (the splash screen and

game play screen, at a minimum).

2. Compile the Been There, Done That! application for a variety of target SDK

versions and test them on handsets or the emulator with the appropriate AVD.

ptg

This page intentionally left blank

ptg

HOUR 21

Diving Deeper into Android

What You’ll Learn in This Hour:
. Exploring more advanced Android features
. Designing advanced user interfaces
. Working with multimedia
. Managing and sharing data
. Accessing underlying device hardware

When you are becoming familiar with a new mobile platform, it can be very helpful to

know what is feasible and what is not. This hour provides a crash-course in some of the

more advanced features of the Android SDK. Specifically, you will learn more about using

core application features, designing advanced user interfaces, using multimedia, manag-

ing storage and data, and accessing the underlying device hardware.

Exploring More Core Android Features
Twenty-four hours is certainly not enough time to cover all the interesting and useful fea-

tures of the Android platform and Android SDK. You’ve already packed tons of features

into the Been There, Done That! application over the course of this book. In this hour, you

will learn about many of the advanced features of the Android platform.

Declaring and Enforcing Application Permissions
As you know, applications must register the appropriate permissions they require within

the Android manifest file. Applications can also declare and enforce their own custom per-

missions with the <permission> tag. Each permission must be defined in the Android

manifest file and can be applied to specific components—notably an activity or a serv-

ice—within the application. You can also apply permissions at the method level.

ptg

Watch
Out!

348 HOUR 21: Diving Deeper into Android

Alerting the User with Notifications
An application can alert the user even when the application isn’t actively running

in the foreground using a notification. For example, a messaging application might

notify users when a new message is delivered, as shown in Figure 21.1.

FIGURE 21.1
A notification in
the status bar.

Notifications come in a variety of forms. An application can use several different

kinds of notifications, provided that it has the appropriate permissions registered in

the Android manifest file:

. Display a text notification on the status bar.

. Play a sound.

. Vibrate the device.

. Change the indicator light color and blinking frequency.

Not all devices support every notification type. For example, some devices might
not have the ability to vibrate or play sounds, or have an indicator light.

ptg

Designing Advanced User Interfaces 349

Notifications are created and triggered using the NotificationManager system serv-

ice (android.app.NotificationManager). Once it is requested, you can create a

Notification object (by setting the appropriate notification text, vibration, light,

and sound settings) and use the notify() class method to trigger the notification.

Watch
Out!

Take special care to use notifications appropriately, so as not to be a nuisance to
the user. Some notification methods, such as vibration, must be tested on the
device because the Android emulator does not simulate this type of action.

Designing Advanced User Interfaces
The best and most popular applications on the Android platform have one thing in

common: Each has an excellent, well-designed user interface. You’ve worked with

many of the common user interface features of Android, such as layouts and user

interface controls. However, the Android SDK has many other exciting user interface

features, including the following:

. The ability to apply consistent settings across many controls or entire screens

using styles and themes

. The ability to design and reuse custom user interface components

. A powerful input method framework

. The ability to detect various screen gestures

. A text-to-speech (TTS) engine

. Speech recognition support

Using Styles and Themes
The Android SDK provides two powerful mechanisms for designing consistent user

interfaces: styles and themes. You can use themes and styles to make application

screens consistent and easy to maintain.

A style is a grouping of common View attribute settings that can be applied to any

number of View controls. For example, you might want all View controls in your

application, such as TextView and EditText controls, to use the same text color,

font, and size. You could create a style that defines these three attributes and apply

it to each TextView and EditText control within your application layouts.

ptg

350 HOUR 21: Diving Deeper into Android

A theme is a collection of one or more styles. Whereas you apply a style to a specific

control, such as a TextView control, you apply a theme to all View objects within a

specified activity. Applying a theme to a set of View objects all at once simplifies

making the user interface look consistent; it can be a great way to define color

schemes and other common View attribute settings across an application. You can

specify a theme programmatically by calling the Activity class’s setTheme()

method. You can also apply themes to a specific activity in the Android manifest

file.

Did you
Know?

The Android SDK includes a number of built-in themes, which can be found in the
android.R.style class. For example, android.R.style.Theme is the default
system theme. There are themes with black backgrounds, themes with and with-
out a title bar, themes for dialog controls, and more.

Designing Custom View and ViewGroup Controls
You are already familiar with many of the user interface controls, such as layout

and View controls, that are available in the Android SDK. You can also create cus-

tom controls. To do so, you simply start with the appropriate View (or ViewGroup)

control from the android.view package and implement the specific functionality

needed for your control or layout.

You can use custom View controls in XML layout files, or you can inflate them pro-

grammatically at runtime. You can create new types of controls, or you can simply

extend the functionality of existing controls, such as TextView or Button controls.

For more information on implementing custom View controls, see

http://developer.android.com/guide/topics/ui/custom-components.html.

Working with Input Methods
The Android platform provides a user-friendly software keyboard (see Figure 21.2)

for devices that do not have hardware keyboards. The Android SDK also includes

powerful text input method support for predictive text and downloadable input

method editors (IMEs).

http://developer.android.com/guide/topics/ui/custom-components.html

ptg

Designing Advanced User Interfaces 351

Handling User Gestures
You already know how to listen for click events. You can also handle gestures,

such as flings, scrolls, and taps, by using the GestureDetector class

(android.view.GestureDetector). You can use the GestureDetector class by

implementing the onTouchEvent() method within an activity.

The following are some of the gestures an application can watch for and handle:

. onDown—Occurs when the user first presses the touch screen

. onShowPress—Occurs after the user first presses the touch screen but before

the user lifts up or moves around on the screen

. onSingleTapUp—Occurs when the user lifts up from the touch screen as part

of a single-tap event

. onSingleTapConfirmed—Called when a single-tap event occurs

. onDoubleTap—Called when a double-tap event occurs

. onDoubleTapEvent—Called when an event within a double-tap gesture

occurs, including any down, move, or up action

FIGURE 21.2
The Android
software key-
board.

ptg

352 HOUR 21: Diving Deeper into Android

. onLongPress—Similar to onSingleTapUp but called if the user has held his or

her finger down just long enough to not be a standard click but also didn’t

move the finger

. onScroll—Called after the user has pressed and then moved his or her finger

in a steady motion and lifted up

. onFling—Called after the user has pressed and then moved his or her finger

in an accelerating motion just before lifting it

In addition, the android.gesture package allows an application to recognize arbi-

trary gestures, as well as store, load, and draw them. This means almost any symbol

a user can draw could be turned into a gesture with a specific meaning. Some ver-

sions of the SDK have a Gesture Builder application that can simplify the process of

creating gestures for applications that don’t have a gesture-recording feature.

For more information about the android.gesture package, see

http://developer.android.com/resources/articles/gestures.html.

Converting Text to Speech
The Android platform includes a TTS engine (android.speech.tts) that allows

devices to perform speech synthesis. You can use the TTS engine to have your appli-

cations “read” text to the user. You may have seen this feature used frequently with

Location-Based Services (LBS) applications that allow for hands-free directions.

Other applications use this feature for users who have reading or sight problems.

The Android TTS engine supports a variety of languages, including English (in

American or British accents), French, German, Italian, and Spanish.

The synthesized speech can be played immediately or saved to an audio file, which

can be treated like any other audio file.

Watch
Out!

To provide TTS services to users, an Android device must have both the TTS
engine (available in Android SDK 1.6 and higher) and the appropriate language
resource files. In some cases, the user must install the appropriate language
resource files (assuming that the user has space for them) from a remote loca-
tion. The users can do this themselves by going to Settings, Text-to-speech, Install
Voice Data. You may also need to do this on your devices. Additionally, the appli-
cation can verify that the data is installed correctly or trigger the installation if it’s
not. See the documentation for the android.speech.tts package.

http://developer.android.com/resources/articles/gestures.html

ptg

Working with Multimedia 353

Converting Speech to Text
You can enhance an application with speech recognition support by using the

speech recognition framework (android.speech.RecognizerIntent). You use this

intent to record speech and send it to a recognition server for processing, so this

feature is not really practical for devices that don’t have a reasonable network

connection.

Did you
Know?

On Android SDK 2.1 and later, speech recognition is built in to most pop-up key-
boards. Therefore, an application may already support speech recognition, to
some extent, without any changes. However, directly accessing the recognizer can
allow for more interesting spoken word control over applications.

Working with Multimedia
Mobile devices are increasingly being used as multimedia devices. Many Android

devices have built-in cameras, microphones, and speakers, allowing playback and

recording of multimedia in a variety of formats. The Android SDK provides compre-

hensive multimedia support, allowing developers to incorporate audio and visual

media (still and video) into applications. These APIs are part of the android.media

package.

Watch
Out!

The Android emulator cannot record audio or video. Testing of audio and video
recording must be done using a real Android device. Also, the recording capabili-
ties of a given device may vary based upon the hardware and software compo-
nents used. For instance, Android devices that aren’t phones may be lacking
microphones and, more frequently, do not feature cameras.

Playing and Recording Audio
The Android SDK provides mechanisms for audio playback and recording in various

formats. Audio files may be resources, local files, or URI objects to shared or network

resources. The MediaPlayer class (android.media.MediaPlayer) can be used to

play audio, and the MediaRecorder class (android.media.MediaRecorder)

can be used to record audio. Recording audio requires the

android.permission.RECORD_AUDIO permission.

ptg

354 HOUR 21: Diving Deeper into Android

Playing and Recording Video
You can use the VideoView control to play video content on a screen. You can use

the MediaController control to provide the VideoView control with basic video

controls, such as play, pause, and stop (see Figure 21.3).

FIGURE 21.3
A VideoView
control with a
MediaControll-
er control.

As with audio recording, you can use the MediaRecorder class to record video con-

tent using the built-in camera. Applications that access the camera hardware must

have the android.permission.CAMERA permission registered, and those that record

audio using MediaRecorder must register the android.permission.RECORD_AUDIO

permission in the Android manifest file. Thus, to record video, which uses the micro-

phone and camera, both permissions should be added to the Android manifest file.

Working with 2D and 3D Graphics
If you’re familiar with computer graphics programming, you will be pleased to note

that Android has fairly sophisticated graphics capabilities for a mobile device.

ptg

Working with 2D and 3D Graphics 355

Using the Android Graphics Libraries
The Android SDK comes with the android.graphics package, which includes a

number of handy classes for drawing on the screen (see Figure 21.4). Some features

of the Android graphics package include bitmap graphics utilities and support for

typefaces, fonts, paints, gradients, shapes, and animation. There are also helper

classes, such as the Matrix class that can help perform graphics operations.

FIGURE 21.4
A simple two-
dimensional
graphic created
with Android.

Using the OpenGL ES Graphics API
For more advanced graphics, Android uses the popular OpenGL ES graphics API

(1.0), and it provides limited support for OpenGL ES 1.1. Applications can use

Android’s OpenGL ES support to draw, animate, light, shade, and texture graphical

objects in three dimensions (see Figure 21.5).

ptg

356 HOUR 21: Diving Deeper into Android

Personalizing Android Devices
Personalization of a device involves allowing the user to change the look and

behavior of their user experience. From the software side, personalization involves

configuring features such as the wallpaper, ringtone, and such. Android allows a

deep level of customization and personalization. Alternate home screens, themes,

graphics, and sounds can be modified. Android applications can provide many of

these personalization features to users. For instance, a branded application might

allow the users to set ringtones and wallpapers that support the brand.

Setting the Ringtone
An application can change the handset ringtone by using the RingtoneManager.

To modify the ringtone, an application must have the appropriate permission

(android.permission.WRITE_SETTINGS) registered in the Android manifest file. You

can also launch the ringtone picker by using the ACTION_RINGTONE_PICKER intent.

Setting the Wallpaper
An application can set a wallpaper for the background of the Home screen by using

the WallpaperManager class. Various methods are provided to retrieve the current

wallpaper and set a new one using a bitmap, a resource, or another form of

wallpaper.

FIGURE 21.5
An OpenGL ES
graphic created
with Android.

ptg

By the
Way

Personalizing Android Devices 357

In addition to using static images as wallpapers, Android supports the notion of live

wallpapers. These are essentially animated wallpapers but can contain almost any-

thing an application can draw on a surface. For example, you could create a wall-

paper that visually shows the current weather, time of day, information about music

playing, a slideshow, or some sort of video or animated demonstration. Live wallpa-

pers are similar to widgets in that they are surfaces; however, the implementation

details are different.

For more information on wallpapers, see the Android SDK documentation related to

the android.service.wallpaper package.

Creating a Live Wallpaper
In addition to still image wallpapers, Android supports the notion of a live wallpa-

per. Instead of displaying a static image, such as a JPEG, a live wallpaper can dis-

play anything that can be drawn on a surface using the full graphical capabilities

of the device and the Android SDK (as described in the section on 2D and 3D graph-

ics we discussed earlier in this hour).

A live wallpaper is similar to an Android Service, but its result is a surface that the

host can display. You can create a live wallpaper as complex as you like, but hand-

set responsiveness and battery life should be taken in to account. Some examples of

live wallpapers include

. A 3D display showing an animated scene portraying abstract shapes

. A service that animates between images found on an online image sharing

service

. An interactive pond with water that ripples with touch

. Wallpapers that change based on the actual season, weather, and time of day

To learn more about how to implement live wallpapers, see the article on live wall-
papers at the Android documentation site (http://bit.ly/bngiaP) and the Cube Live
Wallpaper sample application included with the Android SDK.

http://bit.ly/bngiaP

ptg

358 HOUR 21: Diving Deeper into Android

Managing and Sharing Data
You are already familiar with some of the ways applications can store data

persistently:

. They can store simple, primitive data types within SharedPreferences at the

application and activity levels.

. They can store data on a remote application server.

Applications can also store and share data by doing the following:

. They can leverage the file and directory structure on the device to store private

application files in any format.

. They can store structured data in private SQLite databases.

. They can access data within other applications that act as content providers.

. They can share internal application data by becoming content providers.

You already know how to work with SharedPreferences and how to store data on

a network application server, so let’s talk about other ways of managing and shar-

ing data.

Working with Files and Directories
Each Android application has its own private application directory and files. You

can use the standard java file I/O package called java.io to manipulate files and

directories.

Android application files are stored in a standard directory hierarchy on the

Android file system. Android application data is stored on the Android file system in

the following top-level directory:

/data/data/<package name>/

Several special-purpose subdirectories are created beneath the top-level application

directory to store databases, preferences, and files. You can also create private direc-

tories and files here, as needed, using the appropriate methods of the application’s

Context object. The following are some of the important file and directory manage-

ment methods of the Context class:

. openFileInput()—Opens an application file for reading in the /files

subdirectory

ptg

Did you
Know?

Did you
Know?

Managing and Sharing Data 359

. openFileOutput()—Creates or opens an application file for writing in the

/files subdirectory

. deleteFile()—Deletes an application file by name from the /files subdi-

rectory

. fileList()—Lists all files in the /files subdirectory

. getFilesDir()—Retrieves a File object for the /files subdirectory

. getCacheDir()—Retrieves a File object for the /cache subdirectory

. getDir()—Creates or retrieves a File object for a subdirectory by name

You can browse the Android file system (of the emulator or a connected device) by
using the DDMS File Explorer.

Storing Structured Data in a SQLite Database
Android applications can have a locally accessible, private application database

powered by SQLite. SQLite relational databases are lightweight and file based—ideal

for mobile devices. The Android SDK includes a number of useful SQLite database

management classes. The SQLite support available on the Android platform is

found in the android.database.sqlite package. Here, you’ll find utility classes for

the following:

. Creating, versioning, and managing databases

. Building proper SQL queries

. Iterating through query results with Cursor objects

. Processing database transactions

. Handling specialized database exceptions

Android has built-in SQLite support. However, you will also find generic database
classes within the android.database package.

In addition to programmatically creating and using SQLite databases, developers

can use the sqlite3 command-line tool, which is accessible through the ADB shell

interface for debugging purposes.

ptg

360 HOUR 21: Diving Deeper into Android

Sharing Data with Other Applications
An application can leverage the data available within other Android applications if

they expose that data by becoming content providers. You can also enable your

application to share data within other applications by making it a content provider.

Using Content Providers
The Android platform ships with some useful applications—such as a contacts

application and a browser application—that expose some or all of their data by act-

ing as content providers. An application can access the content of these applications

by using the content provider data interface. Some content providers provide only

“read” access to data, while others allow applications to create, update, and delete

records, such as contacts.

Most access to content providers comes in the form of queries to specific predefined

URI object contained addresses. Once formulated, a query might return a list of con-

tacts or missed calls, or it might return a specific record, such as all contact informa-

tion for John Smith. Applications can access content provider interfaces much as

they would access any database.

You can think of a URI as an address to the location where content exists. You can

use the managedQuery() method to retrieve data from a content provider and then

iterate through the query results by using a cursor, just as you would any database

query result.

Exploring Some Commonly Used Content Providers
The content providers included with Android can be found in the

android.provider package. Here are some of the most useful content providers:

. MediaStore—Used to access media (audio, video, and still images) on the

phone and on external storage devices

. CallLog—Used to access information about dialed, received, and missed

phone calls

. Browser—Used to access the user’s browsing history and bookmarked websites

. Contacts—Used to access the user’s contacts database

. UserDictionary—A dictionary of user-defined words for use with predictive

text input

ptg

Managing and Sharing Data 361

Did you
Know?

You can bind data from a database or content provider cursor directly to user
interface View controls such as ListView. To do so, use a data Adapter control,
such as ArrayAdapter or CursorAdapter, and a View control derived from
AdapterView, such as a ListView or Spinner control.

Acting as a Content Provider
An application can expose internal data to other applications by becoming a con-

tent provider. To share information with other applications, an application must

implement a content provider interface and register as a content provider within the

Android manifest file.

Organizing Content with Live Folders
A live folder is a special type of object that, when clicked, shows data from an appli-

cation acting as a content provider. For example, a music application might allow

the user to create live folders for specific music playlists, which could be placed on

the Home screen (via a long-click on the home screen, then choosing Folders). To

create a live folder, an application must create an Activity class that responds to

the intent action ACTION_CREATE_LIVE_FOLDER and have a corresponding

ContentProvider object for the data contents of the live folder. See the documenta-

tion for the android.provider.LiveFolders package for more details.

Integrating with Global Search
Android allows applications to be searchable at a system-wide level. This is done by

configuring the application and providing custom Activity classes that handle the

various commands required to handle the search actions and search results.

Additionally, applications can provide search suggestions that will display when a

user is typing their search criteria in the search field (the Quick Search Box).

If your application is content rich, either with content created by users or with con-

tent provided by you, the developer, then integrating with the global search mecha-

nism of Android can provide many benefits and add value to the user. The applica-

tion data becomes part of the overall handset experience, is more accessible, and

your application may be presented to the user in more cases than just when they

launch it.

By the
Way

To learn how to incorporate global search functionality into Android applications,
see the documentation for SearchManager (android.app.SearchManager) and
the Searchable Dictionary sample application found with the Android SDK.

ptg

Did you
Know?

362 HOUR 21: Diving Deeper into Android

Accessing Underlying Device Hardware
Android developers have unprecedented access to the underlying hardware on a

device. In addition to hardware such as the camera and LBS services, the Android

SDK has a variety of APIs for accessing low-level hardware features on the handset,

including the following:

. Reading raw sensor data (such as the magnetic and orientation sensors)

. Accessing Wi-Fi and Bluetooth sensors

. Monitoring battery usage and power management

Not all sensors and hardware are available on each Android device. Many of these
features are optional hardware.

The sensors available on a given device vary in terms of availability and sensitivity.

Some sensors provide raw sensor data, while others are backed by services or soft-

ware to provide useful data to the application.

Reading Raw Sensor Data
The following are some of the device sensors that the Android SDK supports:

. Accelerometer—Measures acceleration in three dimensions

. Light sensor—Measures brightness (which is useful for camera flashes)

. Magnetic field sensor—Measures magnetism in three dimensions

. Orientation sensor—Measures a device’s orientation

. Temperature sensor—Measures temperature

. Proximity sensor—Measures the distance from the device to a point in space

The Android emulator does not simulate any device sensors natively, but
OpenIntents provides a handy sensor simulator (www.openintents.org/en/node/
23). This tool simulates accelerometer, compass, and orientation sensors, as well
as a temperature sensor, and it transmits data to the emulator. You can also test
sensor functionality on the target device.

The SensorManager object is used to gather data from the device sensors. You can

retrieve an instance of SensorManager by using the getSystemService() method.

Watch
Out!

www.openintents.org/en/node/23
www.openintents.org/en/node/23

ptg

Accessing Underlying Device Hardware 363

Working with Wi-Fi
Applications with the appropriate permissions (ACCESS_WIFI_STATE and

CHANGE_WIFI_STATE) can access the built-in Wi-Fi sensor on a device by using the

WifiManager object. You can retrieve an instance of WifiManager by using the

getSystemService() method.

The Android SDK provides a set of APIs for retrieving information about the Wi-Fi

networks available to a device as well as Wi-Fi network connection details. This

information can be used for tracking signal strength, finding access points, or per-

forming actions when connected to specific access points.

Watch
Out!

The emulator does not emulate Wi-Fi support, so you need to perform all testing
of Wi-Fi APIs on a device.

Working with Bluetooth
The Android SDK includes Bluetooth support classes in the android.bluetooth

package. Here, you’ll find classes for scanning for Bluetooth-enabled devices, pair-

ing, and handling data transfer.

Managing Power Settings and Battery Life
Most mobile devices operate primarily using battery power. To monitor the battery,

an application must have the BATTERY_STATS permission, register to receive

Intent.ACTION_BATTERY_CHANGED BroadcastIntent, and implement

BroadcastReceiver to extract the battery information and take any actions

required. The following are some of the battery and power settings that can be

monitored:

. Whether a battery exists

. The battery health, status (charging state), voltage, and temperature

. The battery charge percentage and associated icon

. Whether the device is plugged in via AC or USB power

An application can use the information about the device power state to manage its

own power consumption. For example, an application that routinely uses a lot of

processing power might disable features that use a lot of power in a low-power

situation.

ptg

364 HOUR 21: Diving Deeper into Android

Summary
In this hour, you learned about more advanced features of the Android platform.

You learned about some of the more advanced architectural components of Android

applications, such as how services and notifications can be used and how applica-

tions can define and enforce their own permissions. You learned how to design con-

sistent user interfaces by using styles and themes. You now know that Android

devices have many powerful multimedia features, including the ability to play and

record audio and video, and that it is feasible to develop 3D graphics-intensive

applications by using OpenGL ES. Android applications can take advantage of the

handy SQLite database features and can share data with other applications by

accessing a content provider or by becoming a content provider. Finally, applica-

tions can access and interact with myriad underlying hardware sensors on a device.

Q&A
Q. What multimedia formats are supported on the Android platform?

A. Different Android devices support different formats. The platform supports a

number of core formats, but specific devices may also extend this list as they

see fit. For a complete list of supported formats, see the Android documenta-

tion at http://developer.android.com/guide/appendix/media-formats.html.

Q. Where can I see code examples of the advanced features covered in this
chapter?

A. The implementation details of the features discussed in this chapter are

beyond the scope of this book. However, we have written an advanced

Android book titled Android Wireless Application Development. You can also find

many Android SDK examples on the Android developer website,

http://developer.android.com.

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com

ptg

365Workshop

Workshop

Quiz
1. True or False: Content providers always require an Android application to

declare permissions in the Android manifest file.

2. Which multimedia features are feasible on Android?

A. Ability to play audio

B. Ability to play video

C. Ability to record audio

D. Ability to record video

E. All of the above

3. True or False: The indicator light on an Android device is accessible using the

Android SDK.

4. True or False: This chapter covers all additional features of the Android SDK

not covered elsewhere in this book.

Answers
1. False. Content providers may require specific permissions. However, the

enforcement of permissions depends on the content provider. Check the specif-

ic content provider documentation for what specific permissions are required

to access its provider interface.

2. E. The android.media package includes support for playing and recording

audio and video in a variety of formats. Different Android devices have differ-

ent hardware available, so check specific target devices to make sure they sup-

port the multimedia features an application requires.

3. True. You can use the NotificationManager class to access the LED indicator

light on an Android device.

4. False. The Android SDK has many more features and nuances. In addition,

the framework is being updated and enhanced very rapidly. Various resources,

blogs, articles, and developer guides can be found at

http://developer.android.com. Also see our blog for tips, tricks, guides, and

pointers to other resources: http://androidbook.blogspot.com.

http://developer.android.com
http://androidbook.blogspot.com

ptg

366 HOUR 21: Diving Deeper into Android

Exercises
1. Think of three different ways a local SQLite database could be used to

enhance the Been There, Done That! application.

2. Review the various system services that can be requested by using the

getSystemService() method. The various services are defined in the

android.content.Context class.

3. Review the Been There, Done That! application and identify three functional

areas where you could design and use custom View controls. What would

those custom controls do?

4. Many Android applications have the same look because they rely on the

default theme provided by the platform. Add theme definitions to the layout

screens in the Been There, Done That! application. This way, the application

will have a custom look that will be consistent across Android devices, regard-

less of what their default theme is.

ptg

HOUR 22

Testing Android Applications

What You’ll Learn in This Hour:
. Best practices for testing mobile applications
. Developing a mobile test framework
. Handling other testing concerns

Every mobile developer dreams of developing a “killer app.” Many people think that if

they could just come up with a great idea, they’d be home free. Wrong. The truth is, any-

one can come up with a great idea. The trick is to act on the idea with a clear vision, a

concise “pitch” to users, an intuitive user interface, and you have to get that app out to

users quickly—before someone else does! A killer app must have the right mix of these

ingredients, but a poor implementation of an excellent idea isn’t going to become a killer

app, so it’s important to test an application thoroughly before you publish it. In this hour,

you learn how to test mobile applications in a variety of ways.

Testing Best Practices
Mobile users expect a lot from today’s mobile applications. They expect the applications

they install to be stable, responsive, and secure. Stable means that the application works

and doesn’t crash or mess up the user’s phone. Responsive means the phone always

responds to key presses, and long operations use progress bar indicators. Secure means

that the application doesn’t abuse the trust of the user, either intentionally or unintention-

ally. Users expect an application to have a reasonably straightforward user interface, and

they expect the application to work 24/7 (especially when it comes to networked applica-

tions with a server side).

It might seem like users expect a lot for an application that might be priced at $0.99, but

really, do any of these expectations seem unreasonable? We don’t think so. However, they

do impose significant responsibilities on a developer in terms of testing and quality control.

ptg

Did you
Know?

368 HOUR 22: Testing Android Applications

Whether you’re a team of one or one hundred, every mobile development project

can benefit from a good development process with a solid test plan. The following

are some quality measures that can greatly improve the development process:

. Coding standards and guidelines

. Regular versioned builds

. A defect tracking system with a process for resolving defects

. Systematic application testing (using a test plan)

You can outsource application testing to a third party. Keep in mind that the suc-
cess of any outsourced project depends heavily on the quality of the documenta-
tion you provide (for example, functional specifications, use cases) to the out-
sourcing facility.

Developing Coding Standards
When developers have and follow some guidelines, their code is more cohesive and

easy to maintain. Developing a set of well-communicated coding standards for

development can help drive home some of the important requirements of mobile

applications. For example, developers might want to do the following:

. Discuss and come up with a common way for all developers to implement

error and exception handling.

. Move lengthy or process-intensive operations off the main UI thread.

. Release objects and resources that aren’t actively being used.

. Practice prudent memory management and track down memory leaks.

. Use resources appropriately. For example, don’t hard-code data in code or

layout files.

Performing Regular Versioned Builds
Implementing a reproducible build process is essential for a successful Android proj-

ect. This is especially true for any application that plans to support multiple

Android SDK versions, handsets, or languages. To perform regular, versioned builds,

do the following:

ptg

Testing Best Practices 369

. Use a source control system to keep track of project files.

. Version project files at regular intervals and perform builds.

. Verify (through testing) that each build performs as expected.

There are many wonderful source control systems out there for developers, and most

that work well for traditional development will work fine for a mobile project. Many

popular source control systems—such as Perforce, Subversion, and CVS—work well

with Eclipse.

Did you
Know?

Because of the speed at which mobile projects tend to progress, iterative develop-
ment processes are generally the most successful strategies for mobile develop-
ment. Rapid prototyping gives developers and quality assurance personnel ample
opportunities to evaluate an application before it reaches users.

Using a Defect Tracking System
A defect tracking system provides a way to organize and keep track of application

bugs, called defects, and is generally used along with a process for resolving these

defects. Resolving a defect generally means fixing the problem and verifying that

the fix is correct in a future build.

With mobile applications, defects come in many forms. Some defects occur on all

handsets, while others occur only on specific handsets. Functional defects—that is,

features of an application that are not working properly—are only one type of

defect. You must look beyond these and test whether an application works well with

the rest of the Android operating system in terms of performance, responsiveness,

usability, and state management.

Developing Good Test Plans
Testers must rely heavily on an application’s functional specification, as well as any

user interface documentation, to determine whether features and functionality have

been properly implemented. The application features and workflow must be thor-

oughly documented at the screen level and then validated by testing. In larger

teams, it is not uncommon for interpretive differences to exist between the function-

al specification, the developer’s implementation, and the tester’s resulting experi-

ence. These differences must be resolved as part of the defect-resolution process.

Testers of Android applications have a variety of tools at their fingertips. While some

manual testing is essential, there are now numerous opportunities for automated

testing to be incorporated into testing plans.

ptg

370 HOUR 22: Testing Android Applications

Test plans need to cover a variety of areas, including the following:

. Functional testing—This testing ensures that the features and functions of

the application work correctly, as detailed in the application’s functional

specification.

. Integration testing—This testing ensures that the software integrates well

with other core device features. For example, an application must suspend

and resume properly, and it must gracefully handle interruptions from the

operating system (for example, incoming messages, calls, powering off).

. Client/server testing—Networked mobile applications often have greater test-

ing requirements than stand-alone applications. This is because you must ver-

ify the server-side functionality in addition to the mobile client.

. Upgrade testing—Android phones receive frequent firmware updates, necessi-

tating application upgrades. When possible, perform application upgrade test-

ing of both the client and the server to ensure that any upgrades go smoothly

for users.

. Internationalization testing—This testing ensures internationalization sup-

port—especially language support—early in the development process. If an

application is supporting multiple languages, you’re likely to run into some

problems in this area related to screen real estate as well as issues such as date

formatting.

. Usability testing—This testing identifies any areas of the application that

lack visual appeal or are difficult to navigate or use. It verifies that the appli-

cation’s resource consumption model matches the target audience. For exam-

ple, gamers might accept shorter battery life for graphic-intensive games, but

productivity applications should not drain the battery unnecessarily.

. Performance testing—This testing uses the debugging utilities of the Android

SDK to monitor memory and resource usage; it also identifies performance

bottlenecks as well as dangerous memory leaks and fixes them.

. Conformance testing—This testing reviews any policies, license agreements,

and terms that an application must conform to and verifies that the applica-

tion complies.

. Edge-case testing—An application must be robust enough to handle random

and unexpected events. We’ve all forgotten to lock our phones on occasion,

only to find that the phone has received random key presses, launched ran-

dom apps, or made unnecessary phone calls from the comfort of our pocket.

An application must handle these types of events gracefully. That is to say, it

shouldn’t crash. You can use the Exerciser Monkey tool that comes with the

Android SDK to stress-test an application.

ptg

Maximizing Test Coverage 371

Maximizing Test Coverage
While 100% test coverage is unrealistic, the goal is to test as much of an application

as possible. To do this, you are likely to need to perform tests on the emulator as

well as on target handsets, and you might want to consider using both manual and

automated testing procedures.

Managing the Testing Environment
Don’t assume that mobile applications are simpler to test just because they are

“smaller” than desktop applications or have fewer features. Testing mobile applica-

tions poses many unique challenges to testers, especially in terms of configuration

management.

Identifying and Acquiring Target Handsets
The earlier you can decide on and get your hands on the target handsets, the better.

Sometimes, this is as easy as going to the store and grabbing a new phone with a

new service plan; other times, it’s more complicated.

Did you
Know?

Some companies run developer programs with phone labs. Here, developers can
rent time on specific handsets—by mail, remotely (via the Internet), or by traveling
to the lab. This gives developers access to a wide variety of handsets on many
different networks, without requiring them to own each and every one. Some labs
are even staffed with experts to help iron out handset-specific problems.

For preproduction handsets, it can take months to get the hardware in-hand from

the manufacturer or operator through developer program loaner services.

Cooperating with carrier handset loaner programs and buying handsets from retail

locations is frustrating but sometimes necessary. Don’t wait until the last minute to

gather the test hardware you need.

Watch
Out!

There is no guarantee that a preproduction handset will behave exactly the same
as the production model that eventually ships to consumers. Features are often
cut at the last minute to make the production deadline.

Dealing with Device Fragmentation
One of the biggest challenges a mobile application tester faces is the explosion of

new Android devices on the market. This problem—called handset fragmentation—

makes the task of keeping track of the devices available—running the different ver-

sions of the Android SDK and having different screen sizes, features, and hardware

increasingly complex (see Figure 22.1).

ptg

372 HOUR 22: Testing Android Applications

Managing a Handset Database
It is a good idea to use a database to keep track of handset information for develop-

ment, testing, and marketing purposes. Such a database might contain information

such as the following:

. Handset information (models, features, SDK versions, hardware specifics such

as whether a handset has a camera or built-in keyboard)

. Which handsets you have on hand (and where they are, if they are owned or

loaned, and so on)

. Which handsets you want to target for a given application

. The handsets on which your applications are selling best

Testing on the Emulator
A test team cannot be expected to set up testing environments on every carrier or in

every country where users will use an application. There are times when using the

Android emulator can reduce costs and improve testing coverage. The following are

some of the benefits of using the emulator:

. Rapidly testing when a target handset is not available (or is in short supply).

. Simulating handsets when they are not yet available (for example, preproduc-

tion phones).

. Testing difficult or dangerous scenarios that are not feasible or recommended

on live handsets (such as tests that might somehow break a phone or invali-

date a service agreement).

FIGURE 22.1
Handset frag-
mentation.

ptg

Maximizing Test Coverage 373

Watch
Out!

The emulator provides a useful but limited simulation of a generic Android device.
By using AVD configuration options, you can customize an emulator to closely rep-
resent a target handset. However, an emulator does not rely on the same hard-
ware—or software—implementation that will be found on an actual handset. An
emulator simply pretends. The more hardware features an application relies on
(for example, making calls, networking, LBS, the camera, Bluetooth), the more
important it is to test on an actual device.

Testing on Target Handsets
Here is a mobile mantra that is worth repeating: Test early, test often, test on the actu-

al device.

It’s important to get target handsets in-hand as soon as you can. This cannot be

said enough: Testing on the emulator is helpful, but testing on the handset is essential. In

reality, it doesn’t really matter if your application works on the emulator; users run

the applications on handsets.

Watch
Out!

It’s important to test application assumptions early and often, on the target hand-
set(s). This is called feasibility testing. It is disheartening to design and develop
an application and then find that it doesn’t work on the actual handset. Just
because your application works on the emulator does not guarantee that it will
work on the handset.

Testing on a target handset is the safest way to ensure that an application works

correctly because you are running the application on the same hardware that your

users are going to use. By mimicking the environment your users will use, you can

ensure that your application works as expected in the real world.

Watch
Out!

While it can be convenient to test with the handset plugged in, this is not the way
most users will use your application. They will generally use battery power only. Be
sure to unplug the handset and test an application the way users will most likely
encounter it.

Performing Automated Testing
Collecting application information and building automated tests can help you build

a better, more bulletproof application. The Android SDK provides a number of pack-

ages related to code diagnostics. Application diagnostics fall into two categories:

. Logging application information for performance or usage statistics

. Automated test suites based on the JUnit framework

ptg

Did you
Know?

374 HOUR 22: Testing Android Applications

Logging Application Information
At the beginning of this book, you learned how to leverage the built-in logging class

Log (android.util.Log) to implement different levels of diagnostic logging. You

can monitor the output of log information from within Eclipse or by using the

LogCat utility provided with the Android SDK.

Watch
Out!

Don’t forget to strip any diagnostic information, such as logging information, from
the application before publication. Logging information and diagnostics can nega-
tively affect application performance.

Automated Testing with JUnit and Eclipse
The Android SDK includes extensions to the JUnit framework for testing Android

applications. Automated testing is accomplished by creating test cases, in Java code,

that verify that the application works the way you designed it. This automated test-

ing can be done for both unit testing and functional testing, including user interface

testing.

This discussion is not meant to provide full documentation for writing JUnit test

cases. For that, look to online resources, such as http://www.junit.org, or books on

the subject.

Some people follow a paradigm of creating the test cases first, and then writing
code that causes the test cases to pass. This method can work well in an envi-
ronment where all application results and behavior are known before coding
begins and will change little or not at all.

Automated testing for Android involves just a few straightforward steps:

1. Create a test project.

2. Add test cases to the new project.

3. Run the test project.

The following sections walk you through how to perform each of these steps to test a

specific feature of the Been There, Done That! settings screen.

Creating the Test Project
Recall from Hour 1, “Getting Started with Android,” when you first created a project

using Eclipse, that the wizard has an option for creating a test project. You’re now

going to leverage that option to get up and running quickly with creating test cases.

http://www.junit.org

ptg

Maximizing Test Coverage 375

Conveniently, the option for creating a test project is also available after a project

already exists. To create a test project for an existing Android project in Eclipse, fol-

low these steps:

1. Choose File, New, Project.

2. Under the Android option, choose Android Test Project.

3. In the section labeled Test Target, choose An Existing Android Project and click

the Browse button.

4. Find the project you want to test and select it. The wizard fills in the rest of the

fields with reasonable default values, as shown in Figure 22.2.

FIGURE 22.2
Test Application
Project Wizard
defaults in
Eclipse.

5. Click Finish. Your new test project is created.

Creating a Test Case
When you have your test project in place, you can write test cases. You will now

create a test case that tests the behavior of the Nickname field of the settings screen

controlled by the QuizSettingsActivity class. To do this, first follow these steps to

create the empty test case file:

ptg

376 HOUR 22: Testing Android Applications

1. Right-click the package name within the src folder of your test project.

2. Choose New, JUnit Test Case.

3. Modify the Name field to say QuizSettingsActivityTests.

4. Modify the Superclass field to say android.test.ActivityInstrumentation

TestCase2<QuizSettingsActivity>. (Ignore the warning that says

“Superclass does not exist.”)

5. Modify Class Under Test to say com.androidbook.triviaquiz22.

QuizSettingsActivity.

6. Click Finish.

7. In the newly created file, manually add an import statement for

QuizSettingsActivity (or organize your imports).

8. Finally, add the following constructor to the newly created class:

public QuizSettingsActivityTests() {
super(“com.androidbook.triviaquiz22”, QuizSettingsActivity.class);

}

Now that your test case file is ready, you can test the Nickname field and make sure

it matches the value of the nickname in SharedPreferences and that it updates

after a new string is entered. You first need to modify the setUp() method to per-

form some common behavior. You get the nickname EditText object for use in the

other two tests. The following code does just that:

@Override

protected void setUp() throws Exception {
super.setUp();
final QuizSettingsActivity settingsActivity = getActivity();
nickname =

(EditText) settingsActivity.findViewById(R.id.EditText_Nickname);
}

The method call for getActivity() retrieves the activity being tested. Within the

ActivityInstrumentationTestCase2 class, the activity is created as it would nor-

mally be when the activity is launched.

Normally, you would also override the tearDown() method. However, for these tests,

you have no lingering items that need to be cleaned up.

JUnit tests must begin with the word test. So, to write specific tests, you need to cre-

ate methods that begin with the word test, followed by what you are testing. First,

ptg

Maximizing Test Coverage 377

make sure the displayed Nickname field is consistent with the stored value in

SharedPreferences. Add the following code to QuizSettingsActivityTests to

implement this test:

public void testNicknameFieldConsistency() {
SharedPreferences settings =

getActivity().getSharedPreferences(QuizActivity.GAME_PREFERENCES,
Context.MODE_PRIVATE);

String fromPrefs =
settings.getString(QuizActivity.GAME_PREFERENCES_NICKNAME, “”);

String fromField = nickname.getText().toString();
assertTrue(“Field should equal prefs value”,

fromPrefs.equals(fromField));
}

The first few lines are all standard Android code that you should be familiar with.

By using the Android testing framework, you are enabling using the various

Android objects within the testing code. The last line, however, is where the real test

is performed. The assertTrue() method verifies that the second parameter actually

is true. If it’s not, the string is output in the results. In this case, the two strings are

compared. They should be equal.

The next test is to verify that editing the field actually updates the Shared

Preferences value. Add the following code to QuizSettingsActivity to test that

this is true:

private static final String TESTNICK_KEY_PRESSES = “T E S T N I C K ENTER”;
// ...
public void testUpdateNickname() {

Log.w(DEBUG_TAG, “Warning: “ +
“If nickname was previously ‘testnick’ this test is invalid.”);

getActivity().runOnUiThread(new Runnable() {
public void run() {

nickname.setText(“”);
nickname.requestFocus();

}
});
sendKeys(TESTNICK_KEY_PRESSES);
SharedPreferences settings =

getActivity().getSharedPreferences(QuizActivity.GAME_PREFERENCES,
Context.MODE_PRIVATE);

String fromPrefs =
settings.getString(QuizActivity.GAME_PREFERENCES_NICKNAME, “”);

assertTrue(“Prefs should be testnick”, fromPrefs
.equalsIgnoreCase(“testnick”));

}

As before, most of this is standard Android code that you should be familiar with.

However, notice that this code is performing a couple calls on the UI thread. This is

required for these particular calls; if you remove those calls from the UI thread, the

test case fails.

ptg

378 HOUR 22: Testing Android Applications

To run an entire test method on the UI thread, add the @UiThreadTest annotation
before your method implementation. But note that this won’t work in the example
shown here because the sendKeys() method can’t be run on the main thread.
(You get the “This method cannot be called from the main application thread”
exception error.) Instead, just portions of the test can be run on the UI thread, as
shown.

Running Automated Tests
Now that your tests are written, you need to run them to test your code. There are

two ways of doing this. The first method is the most straightforward and provides

easy-to-read results right in Eclipse: You simply select Debug, Debug As, Android

JUnit Test. The Console view of Eclipse shows the typical installation progress for

both the test application and the application being tested (see Figure 22.3).

Watch
Out!

FIGURE 22.3
Eclipse console
output while
running JUnit
tests on
Android.

Watch
Out!

If the test project is not selected, Eclipse may try to run a regular application as a
JUnit test application, resulting in a bunch of warnings and errors. To avoid this
problem, right-click on the project name in the Package Explorer pane of Eclipse,
choose Debug As, and then choose Android JUnit Test. Alternately, you can go to
the Debug Configurations menu, double-click on Android JUnit Test to create a new
test configuration, and then fill in the details.

With the LogCat view, you see the normal Android debug output as well as new out-

put for the tests that are performed. In this way, you can better debug problems or

errors that result from failures, or even find new failures that should be tested for.

The JUnit view, though, may be the most useful. It summarizes all the tests run and

how long each one takes, and it includes a stack trace for any failures found. Figure

22.4 shows what this looks like in Eclipse.

ptg

Maximizing Test Coverage 379

The second way of running the tests is available only in the emulator. To use this

method, launch the Dev Tools app and then choose Instrumentation. If you’ve fol-

lowed along and don’t have any other tests installed, you’ll likely see

android.test.InstrumentationTestRunner as the only item shown. Clicking this

launches the tests. When you use this method, the only way to see results (other

than a visual indication during user interface tests) is to watch the LogCat output.

The description of the item in the list can be changed. In the AndroidManifest.xml

file of the test app, in the instrumentation section, modify it to read as follows:

<instrumentation
android:targetPackage=”com.androidbook.triviaquiz22”
android:name=”android.test.InstrumentationTestRunner”
android:label=”TriviaQuiz22 Tests” />

Now when you launch Dev Tools and go to the Instrumentation section, you see the

text of the label rather than the name.

Adding More Tests
Now you have all the tools you need to add more unit tests to your application. The

Android SDK includes a variety of classes that can be implemented for performing a

wide range of tests specific to Android. Among these are the following:

. ActivityUnitTestCase—Similar to the example testing in the preceding sec-

tion in that it tests on Activity, but at a lower level. This class can be used to

unit test specific aspects of an activity, such as how it handles onPause(),

when it has called onFinished(), and so on. This is a great way to test the life

cycle of an activity.

. ApplicationTestCase—Like ActivityUnitTestCase, this class allows testing

of Application classes in a fully controlled environment.

FIGURE 22.4
Eclipse JUnit
view running
Android tests.

ptg

380 HOUR 22: Testing Android Applications

. ProviderTestCase2—Performs isolated testing on a content provider.

. ServiceTestCase—Performs isolated testing on a service.

In addition to these test case objects, there are helper classes for providing mock

objects (that is, objects that aren’t the real ones but can be used to better trace calls

to the real objects), helper classes for simulating touch screen events, and other such

utilities. You can find full documentation on these classes in the android.test

package.

Summary
In this hour, you learned about the many different ways in which an Android appli-

cation can be tested and improved, resulting in a higher-quality product that users

will appreciate. You learned many best practices for testing mobile applications,

including the importance of creating a solid, complete testing plan. You learned

about some of the ways you can acquire handsets for testing purposes. You also

learned how to create automated tests using the Android JUnit framework. Finally,

you learned about some other specialized testing concerns that should be part of

any good product test plan.

Q&A
Q. Are there any certification programs for Android applications?

A. There are currently no certification programs for Android applications.

However, providers, operators, and certain mobile marketplaces may impose

their own application quality standards, as they see fit.

Q. Where can I find out more about creating automated test suites with JUnit?

A. Visit the JUnit organization website, at www.junit.org, or find one of the many

books on JUnit.

www.junit.org

ptg

381Workshop

Workshop

Quiz
1. True or False: Developers can create automated tests to exercise Android appli-

cations programmatically.

2. Which of the following should be considered an application defect or bug?

A. An application takes a long time to start up.

B. An application crashes when there is an incoming call.

C. German text is too long to display onscreen and overflows.

D. Buttons are too small or close together to push with a finger.

E. An application enters an infinite loop when certain criteria are reached.

F. All of the above.

3. True or False: Automated testing for Android applications can be performed

only on the emulator.

4. The JUnit framework included with Android can be used for testing many

things. Which of the following can it not do?

A. Run repeated tests all day long, without tiring

B. Test on old devices

C. Move the handset around the country to test GPS signals

D. Test behavior on multiple carriers/operators

Answers
1. True. The Android SDK includes a variety of packages for developing test suites

for automated application testing.

2. F. These are all defects of different kinds—performance, integration, interna-

tionalization, usability, and functional defects. (A) An application that takes

too long to start up is a serious performance issue that may cause the Android

operating system to kill the app—which is not good. (B) Most Android devices

are phones first; an application must interact well with the rest of the system,

which means gracefully handling incoming calls and text messages. (C) A

well-written application does not short-change users in foreign languages by

ptg

382 HOUR 22: Testing Android Applications

providing a substandard user interface. (D) A well-done user interface is essen-

tial to the success of an application. (E) A functional defect—that is, a prob-

lem with the core application logic—is always a defect, no matter how unlike-

ly the event.

3. False. Automated tests can be performed on any Android device that can be

connected for debugging.

4. C and D. Unfortunately, the JUnit framework alone can’t physically move

handsets around the world. In addition, it can’t simulate nuances to specific

carriers around the world. However, emulator options can be used to mimic

certain network performance characteristics but not the specifics of a different

networking environment.

Exercises
1. Develop a high-level test plan for the Been There, Done That! application.

2. Write a test case for validating that a user’s avatar uploads correctly.

3. Review the various agreements you have encountered in beginning to develop

Android applications (such as the Android SDK License Agreement and

Google Maps API Terms and Conditions). Identify any test cases that might be

required for compliance with these agreements.

ptg

HOUR 23

Getting Ready to Publish

What You’ll Learn in This Hour:
. Preparing for application publication
. Testing and verifying a release build
. Packaging and signing your application for release

An application may be functionally complete, but you need to take one final step before

you can publish: You must package the application so that it can be deployed to users. In

this hour, you will learn how to prepare and package an application for release on the

most popular Android publishing program: the Android Market.

Understanding the Release Process
Preparing and packaging an application for publication is called the release process (Figure

23.1). The release process is an exciting time: The application is humming, all those trou-

blesome bugs have been resolved (within reason, at least), and you’re ready to put your

app in front of users.

The final build you perform—the build you expect to deliver to users—is called the release

candidate build. The release candidate build should be rigorously tested and verified before

it reaches users’ hands. If the release candidate build passes every test, it becomes the

release build—the official build for publication.

ptg

By the
Way

384 HOUR 23: Getting Ready to Publish

Different people use different terminology for the release process. Different soft-
ware methodologies impose different terms. Some companies have code names
for such events, such as “going gold.” Over the years, we’ve settled on release
and release candidate because, regardless of the methodology of choice, the
terms are pretty self-explanatory to most developers.

To publish an Android application, take the following steps:

1. Prepare and perform a release candidate build of the application.

2. Test the application release candidate thoroughly.

3. Package and digitally sign the application.

FIGURE 23.1
An overview of
the release
process.

Prepare for
Build

Perform Build
“Release Candidate”

Test Build
Thoroughly

Package and Sign
Package

Test Packaged
Release Candidate

Publish
Release!

No Bugs?

No Bugs?

Got Bugs?

Got Bugs?

Fix Bugs!

ptg

Preparing the Release Candidate Build 385

4. Test the packaged application release thoroughly.

5. Publish the application.

Let’s explore each of these steps in more detail.

Preparing the Release Candidate Build
It’s important to polish your application and make it ready for public consumption.

This means you have to resolve any open or outstanding problems or issues with the

application that might block the release. All features must be implemented and

tested. All bugs must be resolved or deferred. Finally, you need to remove any

unnecessary diagnostic code from the application and verify that the application

configuration settings in the Android manifest file are appropriate for release.

Here’s a short prerelease checklist for a typical Android application:

� Sufficiently test the application as described in the test plan, including testing

on target handsets.

� Fix and verify all defects and bugs in the application.

� Turn off all debugging diagnostics for release, including any extraneous log-

ging that could affect application performance.

Preparing the Android Manifest File for Release
Before release, you need to make a number of changes to the application configura-

tion settings of the Android manifest file. Some of these changes are simply com-

mon sense, and others are imposed by marketplaces such as the Android Market.

You should review the Android manifest file as follows:

� Verify that the application icon (various sizes of PNG) is set appropriately. This

icon will be seen by users and is often used by marketplaces to display the

application.

� Verify that the application label is set appropriately. This represents the appli-

cation name as users will see it.

� Verify that the application version name is set appropriately. The version

name is a friendly version label that developers (and marketplaces) use.

ptg

386 HOUR 23: Getting Ready to Publish

Watch
Out!

The Android SDK allows the android:versionName attribute to reference a string
resource. The Android Market does not. You will see an error during the upload
process when your package is validated. The package will not be accepted.

� Verify that the application version code is set appropriately. The version code

is a number that the Android platform uses to manage application upgrades.

Consider incrementing the version code for the release candidate in order to

differentiate it from the prerelease version of the application.

� Confirm that the application uses-sdk setting is set correctly. You can set the

minimum, target, and maximum Android SDK versions supported with this

build. These numbers are saved as the API level of each Android SDK. For

example, Android 2.1 is API level 7.

Did you
Know?

The Android Market filters applications available to specific users based on the
information provided in each application’s manifest file, including the information
provided in the uses-sdk settings.

� Disable the debuggable option.

� Confirm that all application permissions are appropriate. Request only the

permissions the application needs with uses-permission, and make sure to

request permissions the application uses, regardless of handset behavior with-

out them.

Readying Related Services for Release
If the Android application relies on any external technologies or services, such as an

application server, then these must also be readied for release.

Many large projects have a “mock” application server (often called a sandbox) as

well as a real “live” server. The release build needs to be tested against the live serv-

er, just the way users would use it.

Testing the Application Release
Candidate
Once you have addressed all the prerelease issues discussed earlier, you’re ready to

perform the release candidate build. There is nothing particularly special about the

general build process here, except that you need to launch Run Configuration,

rather than Debug Configuration, in Eclipse.

ptg

Packaging and Signing an Application 387

You should test the release candidate as rigorously as possible. In addition to any

regular testing, you should verify that the application meets the criteria of the appli-

cation marketplaces (such as the Android Market) that where you want to publish

to the app.

If you find any defects or issues with the release candidate build, you must decide

whether they are serious enough to stop the release process. If you decide that an

issue is serious enough to require another build, you simply start the release process

over again (see Figure 23.2).

FIGURE 23.2
The release
candidate
testing cycle.Test Build

Thoroughly
Log Bugs to

Defect Tracking

Tester

Test New Build
Thoroughly

If Bug?

If No
New
Bugs? Give Build the

“OK”
for Release

Log Bugs to
Defect Tracking

Tester

Implement Fixes to
Defects from Defect

Tracking

Produce New
Build

Developer

Packaging and Signing an Application
Now that you have a solid release candidate build that’s tested and ready to go, you

need to package the application for publication. This process involves generating

the Android package file (the .apk file) and digitally signing it.

The process of packaging and signing an application has never been easier. The

newest improvements to the Android plug-in for Eclipse include a wizard for doing

just that!

ptg

388 HOUR 23: Getting Ready to Publish

Digitally Signing Applications
Android application packages must be digitally signed for the Android package

manager to install them. Throughout the development process, Eclipse has used a

debug key to manage this process. However, for release, you need to use a real digi-

tal signature—one that is unique to you and your company. To do this, you must

generate a private key.

Watch
Out!

A private key identifies the developer and is critical to building trust relationships
between developers and users. It is very important to secure private key informa-
tion.

The private key can be used to digitally sign the release package files of your

Android application, as well as any upgrades. This ensures that the application (as

a complete entity) is coming from you, the developer.

By the
Way

You don’t need to use a certificate authority, such as Verisign, Equifax, or any of
the other companies that will certify that you are who you say you are before pro-
viding a certificate. Self-signing is standard for Android applications, which simply
means that you aren’t proving who you are, but the next time you publish some-
thing, if the keys match, then users (and Android) will know it’s been signed by the
same person or entity. So don’t share your private key!

Application updates must be signed with the same private key. For security reasons,

the Android package manager does not install the update over the existing applica-

tion if the key is different. This means you need to keep the key corresponding with

the application in a secure, easy-to-find location for future use.

Did you
Know?

The Android platform tests the digital signature only at install time. Therefore, if
the signature expires after installation, the application will continue to run.

Exporting and Signing the Package File
You are now ready to export and sign your Android package file. To do this using

the wizard provided as part of the Eclipse plug-in, perform the following steps:

1. In Eclipse, right-click the appropriate application project and choose the

Export option.

2. Under the Export menu, expand the Android section and choose Export

Android Application.

ptg

Packaging and Signing an Application 389

3. Click the Next button.

4. Select the project to export. (The one you right-clicked before is the default.)

5. On the keystore selection screen, choose the Create New Keystore option and

enter a file location (where you want to store the key) as well as a password

for managing the keystore. (If you already have a keystore, choose browse to

pick your keystore file, then enter the correct password.)

Watch
Out!

Make sure you choose strong passwords for the keystore. Remember where the
keystore is located, too. The same one is required to publish an upgrade to your
application. If it’s checked in to a revision control system, the password will help
protect it, but consider adding an extra layer of privilege required to get to it.

6. Click the Next button.

7. On the Key Creation screen, enter the details of the key, as shown in Figure

23.3.

FIGURE 23.3
Exporting an
Android applica-
tion using the
Eclipse plug-in.

Watch
Out!

The Android team recommends that you use a key validity of 25 years or more. In
fact, the Android Market will reject any application with a key that is not valid until
at least October 22, 2033, so 25 years covers this requirement as well.

ptg

390 HOUR 23: Getting Ready to Publish

8. Click the Next button.

9. On the “Enter destination and key/certificate checks” screen, enter a destina-

tion for the application package file.

10. Click the Finish button.

You have now created a fully signed and certified application package file.

Did you
Know?

You can also use the keytool and jarsigner applications available within the
JDK in addition to the zipalign utility provided with the Android SDK to create a
suitable key and sign an application package file (.apk). Although zipalign is not
directly related to signing, it optimizes the package for more efficient use on
Android. The ADT plug-in for Eclipse runs zipalign automatically after the signing
step.

Testing the Signed Application Package
Now that you have signed and packaged an application, and now that it’s ready for

production, you should perform one last test cycle, paying special attention to subtle

changes to the installation process for signed applications.

Installing the Signed Application Package
Up until now, you’ve allowed Eclipse to handle the packaging and delivery of the

application to handsets and emulators for debugging purposes. Now you have the

application release version sitting on your hard drive, and you need to load it and

test it.

By the
Way

Before installing the release version of your application on the emulator or hand-
set, you should uninstall the debugging version completely. You can do this on the
handset (or emulator) from the Home screen by clicking Menu, Settings,
Application, Manage Applications, choosing the application from the list, clicking
the Uninstall button, and verifying that you want to uninstall the application. Note
that files or data in shared locations, such as images stored in the gallery, may be
left behind. Private files and data, including preferences, will be removed, though.

The simplest way to manually install (or uninstall) an application package (.apk)

file on a handset or the emulator is to use the adb command-line tool. The following

is the command for installing a package using adb:

adb install <path_to_apk>

ptg

Testing the Signed Application Package 391

If there is only one device or emulator, this command works. However, if you have

multiple devices and emulators floating around, you need to direct the installation

command to a specific one. You can use the devices command of the adb utility to

query for devices connected to your computer:

adb devices

The list this command returns includes any emulators or handsets attached to the

computer. The results might look like this:

$ adb devices
List of devices attached
emulator-5554 device
HT9CSP801234 device

You can then target a specific device on which to install the application package file

by using the -s option. For example, to install the BeenThereDoneThat.apk appli-

cation package file on the emulator, you use the following:

adb -s emulator-5554 install BeenThereDoneThat.apk

For more information about the adb command-line tool, see the website

http://developer.android.com/guide/developing/tools/adb.html.

Verifying the Signed Application
You’re almost done. Now it is time to perform a few last-minute checks to make sure

the application works properly:

. Verify smooth installation of the signed application package.

. Verify that all debugging features have been disabled.

. Verify that the application is using the “live” services as opposed to any

“mock” services.

. Verify that application configuration data such as the application name and

icons, as well as the version information, displays correctly.

If you find any issues with the signed application functionality, you must decide

whether they are serious enough to stop the release process and begin again. Once

you’ve tested the application package thoroughly and are confident that users will

have a positive experience using your application, you are ready to publish!

http://developer.android.com/guide/developing/tools/adb.html

ptg

392 HOUR 23: Getting Ready to Publish

Summary
In this hour, you learned how to prepare an application for publication. Specifically,

you learned about the steps to take to verify that your application is ready for publi-

cation, such as stripping debugging information and verifying application configu-

ration settings. You then learned to export an unsigned application package file,

generate a private key, and digitally sign the application for publication.

Q&A
Q. Will the release process described in this hour work for any Android applica-

tion marketplace?

A. Generally speaking, yes. We have focused on the Android Market require-

ments. For details on the requirements imposed by other marketplaces, see

those specific developer programs. Typically, any differences are in the require-

ments imposed on the application’s Android manifest file and the specifics of

the digital signature that accompanies the application.

Q. Why must the key be valid until October 22, 2033?

A. The digital signature of an application may persist through various applica-

tion upgrades. By enforcing a date far in the future, trust relationships

between the application provider and third parties (including users) can be

established and maintained for the long term.

Q. Can I programmatically obtain information about an application package?

A. Yes, you can use the getPackageInfo() method of the PackageManager class

to obtain information about an application package. This method returns a

PackageInfo object, which contains all the information of that application’s

manifest file, from configuration details to the list of specific activities and per-

missions of the application.

ptg

393Workshop

Workshop

Quiz
1. True or False: The release process is important only for big projects.

2. Which version fields in the application’s Android manifest file should you ver-

ify for release purposes?

A. android:versionCode

B. android:versionLabel

C. android:versionName

D. android:version

E. All of the above

3. True or False: You cannot publish an application that includes a debug

signature.

Answers
1. False. Whether you’re a hobbyist working on your own or a member of a large

development team, taking the time to verify whether an application is ready

for release is important to the success of the application.

2. A and C. The Android platform uses the version code to perform upgrades,

and the version name is a string field that developers and markets use for

product support purposes.

3. True. The Android package manager installs only applications that have been

properly signed.

Exercises
1. Choose one of the Been There, Done That! builds from this book (from any

hour). Export the APK package file and digitally sign it.

2. Install the Been There, Done That! application package on a handset by using

the adb command-line utility.

ptg

This page intentionally left blank

ptg

HOUR 24

Publishing on the Android
Market

What You’ll Learn in This Hour:
. Selling Android applications to the Android Market
. Exploring Android application publishing options
. Protecting your intellectual property

Congratulations! You’ve made it to the final hour, and you’ve learned how to build and

test an Android application. The next logical step is to publish your application. In this

hour, you learn how to publish an Android application on the popular Android Market

and explore other publishing options.

Unlike other mobile platforms, Android supports paid distribution, free distribution, and

even self-distribution options. This gives a developer wonderful flexibility for getting appli-

cations into the hands of users, with fewer hurdles than most platforms and a greater

number of choices for users.

Selling on the Android Market
At this time, the Android Market is the primary mechanism for distributing Android appli-

cations. This is where typical users purchase and download applications. As of this writ-

ing, the Android Market is available on most Android handsets. Therefore, in this hour,

we show you how to check a package for preparedness, sign up for a developer account,

and submit your application for sale on the Android Market.

ptg

396 HOUR 24: Publishing on the Android Market

Signing Up for a Developer Account
To publish applications through the Android Market, you must register as a develop-

er. Registering as a developer verifies who you are to Google and signs you up for a

Google Checkout account, which the Android Market uses to disperse revenue from

applications sales back to developers.

To sign up for Android Market, follow these steps:

1. Browse to http://market.android.com/publish/signup, as shown in Figure 24.1.

FIGURE 24.1
The Android
Market publish-
er sign-up page.

2. Sign in with the Google Account you want to use. (At this time, you can’t

change the associated Google Account, but you can change the contact email

addresses for applications independently.)

3. Enter you developer information, including your name, email address, and

website, as shown in Figure 24.2.

http://market.android.com/publish/signup

ptg

Selling on the Android Market 397

4. Confirm your registration payment (as of this writing, $25 USD). Note that

Google Checkout is used for registration payment processing.

5. Provide information for a Google Checkout Merchant account. This is manda-

tory when signing up and paying to be an Android Developer.

6. Agree to link your credit card and account registration to the Android Market

Developer Distribution Agreement.

When you successfully complete these steps, you are presented with the home screen

of the Android Market, which also confirms that the Google Checkout Merchant

account was created.

Uploading an Application to the Android Market
Now that you have an account registered for publishing applications through

Android Market and a signed application package, you are ready to upload it. From

the main page of the Android Market website, sign in and click the Upload

Application button, as shown in Figure 24.3.

FIGURE 24.2
The Android
Market publish-
er profile page.

ptg

398 HOUR 24: Publishing on the Android Market

You now see a form, as shown in Figure 24.4A, for uploading the application pack-

age.

FIGURE 24.3
Android Market
listings.

FIGURE 24.4A
Uploading an
application
form.

Figure 24.4B shows the screen allowing the developer to choose which countries to

ship the application to. All countries that do not allow paid applications to be

exported to are disabled.

ptg

Selling on the Android Market 399

The following is some of the information you must enter on this form:

. Application title and description in several languages—English is the

default language.

. Countries (locations) where the application will be published—These loca-

tions are subject to export compliance laws, so choose your locations carefully.

As of this writing, nearly 50 locations are available, and new locations are

being added regularly. In addition, you can choose specific carriers for each

location to further limit application distribution. Alternatively, you can

choose All Locations to include any future locations supported by the market.

For a complete list of locations where Android applications can be sold or

published for free, see http://market.android.com/support/bin/

answer.py?hl=en&answer=138294.

. Application type and category—Spend the time to set these fields appropri-

ately, as defined by the Android Market, so that your application reaches its

intended audience. Incorrectly categorized applications do not sell well.

. Application price—The Android Market currently supports only one pricing

model: single payment. No subscription model pricing exists yet within the

Android Market. You must find other mechanisms in you’re interested in

recurring payment pricing. Note that the Android Market currently imposes a

30% transaction fee for hosting applications within the Android Market. Prices

FIGURE 24.4B
Choosing the
countries to
export your
application to.

http://market.android.com/support/bin/answer.py?hl=en&answer=138294
http://market.android.com/support/bin/answer.py?hl=en&answer=138294

ptg

Watch
Out!

400 HOUR 24: Publishing on the Android Market

can range from $0.99 to $200 USD, and similar ranges are available in euros

and UK pounds.

. Copy protection information—Choosing this option may help prevent the

application from being copied from the device and distributed without your

knowledge or permission.

. Support contact information—This option defaults to the information you

provided for the developer account. You can change it on an app-by-app

basis, though, which allows for great support flexibility when you’re publish-

ing multiple applications.

. Consent—You must click the checkboxes to agree to the terms of the current

(at the time you click) Android Content Guidelines as well as the export laws

of the United States, regardless of your location or nationality.

Be sure to carefully read the details pages (follow the Learn More link) for the
export compliance rules. There, Google also links to a couple of U.S. government
web pages that provide enough information to know if you’ll run afoul of these
laws.

The application package is uploaded and verified while you fill out the form.

Did you
Know?

Once an application package has been successfully uploaded, the previous infor-
mation can be saved as a draft, which is great for verification before final publish-
ing. Also, the application icon, name, version, localization information, and
required permissions are shown so you can verify that you have configured the
Android Manifest file properly.

Publishing on the Android Market
After you click the Publish button, the application appears in the Android Market

almost immediately. Once your app is published, you can see statistics including

ratings, reviews, downloads, active installs, and so on in the Your Android Market

Listings section of the main page on your developer account. These statistics aren’t

updated as frequently as the publish action, and you can’t see review details directly

from the listing.

By clicking the application listing, you can edit the various fields. Although some

details can be edited, pricing information can’t be changed. For example, if your

app starts as a free application, it will remain that way. You can always upload a

different version for a paid version of the application with new features. Paid

ptg

Selling on the Android Market 401

application pricing can be changed at any time but must fall within certain limits.

(In USD, this is from 99 cents to $200, but it varies depending on the currency in

use.)

Understanding Billing
Unlike some other mobile platforms you may have used, Android does not currently

provide built-in billing APIs that work directly from within applications or charge

directly to the user’s cell phone bill. Instead, Android Market uses Google checkout

for processing payments. Once an application is purchased, the user owns it.

If your application requires a service fee or sells other goods within the application

(for example, ringtones, music, ebooks), you need to develop a custom billing mech-

anism. Most Android devices can leverage the Internet, so using online billing serv-

ices and APIs—PayPal, Google, and Amazon, to name a few—is likely to be the

common choice. Check with your preferred billing service to make sure it specifically

allows mobile use.

Watch
Out!

Currently, the Android Market agreement does not allow for collecting payments
within an application. Although there are applications available on the market that
leverage this sort of thing for enhancing the appeal and user experience of the
applications, this is technically in violation of the current Android Market
Developer Distribution Agreement. Other forms of application distribution, though,
may not be subject to these limitations.

Another method for making money from users is to have an ad-supported mobile

business model. This is a relatively new model for use within applications, as many

older application distribution methods specifically disallowed it. However, Android

has no specific rules against using advertisements within applications. This shouldn’t

come as too much of a surprise, considering the popularity of Google’s AdSense.

Understanding the Android Market Application Return Policy
Although it is a matter of no small controversy, the Android Market has a 24-hour

refund policy on applications. That is to say, a user can use an application for 24

hours and then return it for a full refund. As a developer, this means that sales

aren’t final until after the first 24 hours. However, this only applies to the first down-

load and first return. If a particular user has already returned your application and

wants to “try it again,” he or she must make a final purchase—and can’t return it a

second time. Although this limits abuse, you should still be aware that if your appli-

cation has limited reuse appeal or if all its value can come from just a few hours (or

less) of use, you might find that you have a return rate that’s too high and need to

pursue other methods of monetization.

ptg

402 HOUR 24: Publishing on the Android Market

Removing Your Application from the Android Market
You can use the unpublish action in your developer account to remove an applica-

tion from the Android Market. The unpublish action has an immediate effect but

may take a few moments to become unavailable across the entire system.

Using Other Developer Account Benefits
Having a registered Android developer account enables you to manage your appli-

cations on the Android Market. In addition, if you have a developer account, you

can purchase development versions of Android handsets. These handsets are useful

for general development and testing but may not be suitable for final testing on

actual target handsets because some functionality may be limited, and the firmware

version may be different than that found on consumer handsets.

Exploring Other Android Publishing
Options
The Android platform is an open platform, and publishing options are also very

open. You’ve learned how to publish on the Android Market, but there are other

options available as well. You might want to take advantage of these alternatives to

target handsets and devices that do not come with the Android Market, distribute

handsets to a narrower target audience, distribute applications that don’t comply

with the Android Market rules, or simply control distribution on your own.

Did you
Know?

There are alternative markets for Android devices such as the ARCHOS 5 Internet
Tablet. Applications developed especially for these types of devices are generally
(but not always) marketed separately from applications developed for Android
handsets.

Selling Your Application on Your Own Site
You can distribute Android applications directly from your own website or server.

This method is most appropriate for vertical market applications, content compa-

nies developing mobile marketplaces, and big-brand websites wishing to drive users

to their branded Android applications. It can also be a good way to get beta feed-

back from end users.

Although self-distribution is perhaps the easiest method of application distribution,

it may also be the most difficult in terms of marketing and protect your application

ptg

Exploring Other Android Publishing Options 403

and making money. The only requirement for self-distribution is to have a place to

host the application package file.

The downside of self-distribution is that the end user must configure his or her

device to allow packages from unknown sources. This setting is found under the

Application Settings section of the device Settings application, as shown in Figure

24.5.

FIGURE 24.5
The Application
Settings screen,
showing the set-
ting for down-
loading from
unknown
sources.

After that, the user must enter the URL of the application package into the web

browser on the handset and download the file (or click a link to it). Once the file is

downloaded, the standard Android installation process occurs, during which the

user needs to confirm the permissions and, optionally, confirm an update or replace-

ment of an existing application if a version is already installed.

Watch
Out!

Not all devices include the option for enabling installation from unknown sources.
For instance, the ARCHOS 5 Internet Tablet does not include this option, but (luck-
ily) automatically has this functionality turned on so users can install applications
from any source they choose. Keep in mind such device differences when provid-
ing instructions for users.

ptg

404 HOUR 24: Publishing on the Android Market

Selling Your Application Using Other Alternatives
The Android Market is not the only consolidated market available for selling

Android applications. Because Android is an open platform, there is nothing pre-

venting a handset manufacturer or an operator (or even you) from running an

Android marketplace website or building an Android application that serves as a

market.

Here are a few marketplaces where you might consider distributing your Android

applications:

. PocketGear—This site distributes mobile applications across a wide range of

devices, using various billing models (http://www.pocketgear.com).

. SlideME—This is an Android-specific distribution community for free and

commercial applications, using an on-device store (http://slideme.org).

. AndAppStore—This site offers Android-specific distribution for free applica-

tions, using an on-device store (http://www.andappstore.com).

. SHOP4APPS—This application store run by Motorola targets China

(http://developer.motorola.com/shop4apps/).

. MobiHand—This site distributes mobile applications for a wide range of

devices for free and commercial applications (http://www.mobihand.com).

This list is not complete, and we don’t specifically endorse any one market over

another, but it is important to note that there are a number of alternative distribu-

tion mechanisms available to developers. Application requirements vary by store. In

addition to these, many manufacturers and wireless operators have their own stores,

especially for devices that don’t include the “Google experience” (that is, devices

that don’t include Google apps, such as the Android Market).

Third-party application stores are free to enforce whatever rules they want on the

applications they accept, so carefully read the fine print at each site. A particular

site may enforce content guidelines, require additional technical support, and

enforce digital signing requirements. Only you and your team can determine which

sites are suitable for your specific needs.

Did you
Know?

Anyone can develop a new Android application store and market applications on
his or her own terms. That’s one of the benefits of an open and free platform.

http://www.pocketgear.com
http://slideme.org
http://www.andappstore.com
http://developer.motorola.com/shop4apps/
http://www.mobihand.com

ptg

405Q&A

Summary
In this final hour, you learned how to publish an Android application for the world

to see and use. You now know there are several different publishing avenues, includ-

ing self-publishing from your website as well as a variety of third-party application

stores that can help you sell your work (usually for a cut of the profit). You also

learned how to set up a developer account with the Android Market, one of the most

popular application stores, and can now begin to sell your own applications there.

Perhaps you already have some great app ideas in mind. Fire up Eclipse and start

coding! When you start building applications, drop us a note and tell us about

them. (Our contact information is available in Appendix C, “Supplementary

Materials.”) We’d love to hear from you!

Q&A
Q. What languages are supported by the Android Market?

A. The Android Market currently supports over a dozen languages, and more are

added all the time. The following are some of the languages currently support-

ed by the Android Market:

. American English (en_US)

. French/français (fr_FR)

. German/Deutsch (de_DE)

. Italian/italiano (it_IT)

. Spanish/Español (es_ES)

. Dutch/Nederlands (nl_NL)

. Polish/polski (pl_PL)

. Czech/čeština (cs_CZ)

. Portugese/português (pt_PT)

. Taiwanese/ (zh_TW)

. Japanese/ (ja_JP)

. Korean/ (ko_KR)

. Russian/ (ru_RU)

ptg

406 HOUR 24: Publishing on the Android Market

Q. How can I protect my hard work from software piracy?

A. After you spend time, money, and effort building a valuable Android applica-

tion, it makes sense to protect yourself against reverse engineering of trade

secrets and software piracy. Because Android applications are compiled for the

Dalvik virtual machine, most traditional Java obfuscation tools won’t work.

Some tools, such as ProGuard (http://proguard.sourceforge.net) do support

Android. The Android Market application publication screen also includes a

mysterious (undocumented) check box for copy protection when publishing

your application.

Workshop

Quiz
1. True or False: You don’t need an account to sell on the Android Market.

2. Which of the following statements are true?

A. The Android Market allows for paid and free applications.

B. The Android Market allows developers to sell applications only in the

United States.

C. The Android Market is the only Android application store available.

D. The Android Market imposes a 30% transaction fee on applications sold.

E. All of the above.

3. True or False: You can sell Android applications from your own website.

4. Before submitting an application to the Android Market, which of the follow-

ing must you do?

A. Certify your application through an approved, expensive certification pro-

gram.

B. Provide a notarized Statement of Testing Completeness, proving you’ve test-

ed every single aspect of the application in all scenarios.

C. Sign your application package with a well-known certificate authority

approved for use with the Android Market.

D. Record a video of your application in action.

http://proguard.sourceforge.net

ptg

407Workshop

E. Provide a Word document with thorough documentation of application

flows and a complete user manual.

F. Get certified carrier and operator approval from each and every carrier you

plan on launching on before uploading your application package.

Answers
1. False. You must create an authenticated developer account with Google before

you can publish Android applications on the Android Market.

2. A and D. The Android Market, the most popular Android application store,

allows developers to publish free and paid applications in a number of differ-

ent countries, and it takes a 30% transaction fee for hosting applications.

3. True. You can sell your Android applications from a number of application

shops, including your own site. Keep in mind that users need to enable instal-

lation of applications from unknown sources to install applications from

unknown websites.

4. None! Although none of these are required, some of them, such as thoroughly

testing your application, are advisable. Others might be useful for marketing

purposes. However, none are actually required by the Android Market. It’s very

open!

Exercises
1. Create a developer account for yourself on the Android Market.

2. Browse through the Android Market (on a handset or on the Android Market

website). Think of an idea for an application and determine what category

and price range for that application in the Android Market.

3. Go write a fabulous and exciting application, and then share it with the

world.

ptg

This page intentionally left blank

ptg

APPENDIX A

Configuring Your Android
Development Environment

This appendix walks you through the steps needed to install and configure all the appro-

priate tools you need to get started developing Android applications:

. The appropriate Java Development Kit (JDK)

. The Eclipse integrated development environment (IDE)

. The Android Software Development Kit (SDK) and tools

. Any drivers required by specific Android devices

These software packages are available free of charge from their vendors’ websites.

Development Machine Prerequisites
Android developers may use a number of different operating systems and software config-

urations. This appendix walks you through the installation of the tools used in this book.

If you’re installing from scratch, you will want to choose the latest versions of the software

packages required for development.

For a complete list of software and system requirements, see the Android developer web-

site, http://developer.android.com/sdk/requirements.html.

Supported Operating Systems
Android applications can be written on the following operating systems:

. Windows XP or later

. Mac OS X 10.5.8 or later (x86 only)

. Linux

http://developer.android.com/sdk/requirements.html

ptg

410 APPENDIX A: Configuring Your Android Development Environment

Available Space
You need around 2GB of space to safely install all the tools you need to develop

Android applications. This includes installing the JDK, the Eclipse IDE, the Android

SDK, and the tools and plug-ins.

Installing the Java Development Kit
Android applications can be developed using Sun’s JDK 5 or JDK 6. You can read the

license agreement and download the latest version of the Java Standard Edition JDK

at Sun’s website, http://java.sun.com/javase/downloads/. For specific installation for

your operating system, see the documentation available with the installation pack-

age you choose.

Installing the Eclipse IDE
Most developers use the popular Eclipse IDE for Android development; this IDE is

available for Windows, Mac, and Linux operating systems. You can develop Android

applications using either Eclipse 3.4 (Ganymede) or Eclipse 3.5 (Galileo).

Did you
Know?

If this is your first time using Eclipse, you’ll probably want to choose the Eclipse
IDE for Java EE Developers. This version of the Eclipse IDE includes the Eclipse
Java Development Tools (JDT) plug-in and the optional Web Tools Platform (WTP).

You can read the license agreement and download the Eclipse IDE for Java EE

Developers at www.eclipse.org/downloads/.

The Eclipse package comes as a compressed zip file. There is no installer. You unzip

the package into the desired folder and then follow the specific instructions in the

following sections for your target operating system.

Notes on Windows Installations
Once you’ve installed the files in the appropriate location, navigate to the

Eclipse.exe executable and create a shortcut on your desktop. Edit the shortcut and

modify the target field with any command-line arguments you desire.

Notes on Mac OS X Installations
If you are installing Eclipse on a Mac OS X system, make sure to review the

README.html file included with the Eclipse package. This readme file covers how to

www.eclipse.org/downloads/
http://java.sun.com/javase/downloads/

ptg

Installing the Android SDK 411

pass command-line arguments to Eclipse using the eclipse.ini file and how to run

more than one instance of Eclipse so that you can work with multiple project work-

spaces simultaneously.

Did you
Know?

If you don’t want to use Eclipse, you can find more information about configuring
your computer for Android development with other IDEs at the Android website:
http://developer.android.com/guide/developing/other-ide.html.

Installing the Android SDK
You need to install the Android SDK to develop Android applications. The Android

SDK includes the Android JAR file (Android application framework classes) as well

as Android documentation, tools, and sample code.

The Android SDK is available from the Android Developer website, at http://developer.

android.com/sdk/index.html. You need to agree to the Android license agreement

prior to installing the developer package.

Newer versions of the Android SDK have a helpful installer. You simply download

the compressed file, unzip it into the desired folder, and launch the setup. The com-

pressed SDK files require about 25MB of hard drive space and uncompress to a size

of approximately 40MB.

The Android tools and SDK versions are componentized. This means that instead of

installing one large package for development for all supported versions of Android,

you can pick and choose the Android SDK versions you want to install and work

with using the Android SDK and AVD Manager. This tool allows developers to easily

upgrade their development environment when a new version of Android comes out

(which, historically, has happened quite frequently). In addition to various Android

target versions to choose from, other tools and support can be downloaded, such as

USB drivers for Windows.

You need to use the Android SDK and AVD Manager to install the tools.

Notes on Windows Installations
To update your PATH variable to include the Android tools directory, right-click

Computer and choose Properties. In Vista, you also need to click Advanced System

Settings. You continue by clicking the Advanced tab of the System Properties dialog

and clicking the Environment Variables button.

In the System Variables section, edit the PATH variable and add the path to the tools

directory.

http://developer.android.com/guide/developing/other-ide.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

ptg

412 APPENDIX A: Configuring Your Android Development Environment

Notes on Mac OS X Installations
To update your PATH variable to include the Android tools directory, you need to

edit your .bash_profile file in your Home directory.

Notes on Linux OS Installations
To update your PATH variable to include the Android tools directory, you need to

edit your ~/.bash_profile, ~/.bashrc, or ~/.profile file.

Installing and Configuring the Android
Plug-in for Eclipse (ADT)
The Android Plug-in for Eclipse allows seamless integration with many of the

Android development tools. If you’re using Eclipse, it’s highly recommended that

you install the in, as it will make your life much easier. The Plug-in includes various

wizards for creating and debugging Android projects.

To install the Android Plug-in for Eclipse (ADT), you must launch Eclipse and install

a custom software update. The steps required depend on the version of Eclipse you

use. For complete instructions, see the Android developer website,

http://developer.android.com/sdk/eclipse-adt.html.

To install Android Plug-in on Eclipse 3.5 (Galileo), follow these steps:

1. Launch Eclipse.

2. Select Help, Install New Software.

3. Select the Available Software tab.

4. Click the Add button.

5. Add the remote site https://dl-ssl.google.com/android/eclipse/. If this site fails,

try http://dl-ssl.google.com/android/eclipse/.

6. On the Available Software tab, check the box next to Developer Tools box.

(Also check the boxes for Android DDMS and Android Development Tools.)

7. Click the Next button and follow the wizard for installing the tools. Accept the

terms of the license agreement and click the Finish button.

8. After the software update completes, restart Eclipse.

After you install the Android SDK Eclipse plug-in, update your Eclipse preferences to

point at the Android SDK you previously downloaded. To do this, launch Eclipse and

http://developer.android.com/sdk/eclipse-adt.html
https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

ptg

Configuring Development Hardware for Device Debugging 413

choose Window, Preferences (or Eclipse, Preferences in Mac OS X). Select the Android

preferences and set the path to where you installed the Android SDK. Once you have

set the path appropriately, you will see a number of target SDK versions (Android

1.0, 1.5, 1.6, 2.0, 2.01, 2.1, and so on) listed below SDK Location in the Android

Preferences dialog in Eclipse.

Upgrading the Android SDK
The Android SDK is currently in development, which means you will inevitably have

to upgrade the version of the SDK on your machine. Changes to the Android SDK

may include addition, update, and removal of features; package name changes;

and tool updates.

With each new version of the SDK, Google provides the following useful documents:

. An Overview of Changes—A brief description of major changes to the SDK

. An API Diff Report—A complete list of specific changes to the SDK

. Release Notes—A list of known issues with the SDK

To update the Android SDK, you launch the Android SDK and AVD Manager (by

clicking the little icon that looks like a phone, or under Window, Android SDK and

AVD Manager) and update all packages and check for new ones. Upgrading the

Android SDK involves updating the Android targets (and AVD) within Eclipse,

updating path variables, and reconfiguring existing Android development tools, as

needed. After you upgrade the development environment, you need to port your

Android applications to the new SDK.

Configuring Development Hardware for
Device Debugging
Each Android phone model may have different debugging configurations. Your

Android device must be enabled for debugging via a USB connection.

Enabling USB Debugging on an Android Device
To enable USB debugging, from the Home screen of the Android device, select Menu,

Settings, Applications, Development and enable the USB Debugging option.

Different devices may have this option in different places. For instance, on the

Archos 5 Internet tablet, it is found under Device Storage & USB connection, USB

Connection Mode, and then choose Debug Bridge (ADB) to enable USB debugging.

ptg

Did you
Know?

414 APPENDIX A: Configuring Your Android Development Environment

During long debugging sessions, your phone might often go to sleep. To prevent
this from happening, select the option to have the phone stay awake while charg-
ing, found in the development settings. You should see this option in the develop-
ment settings, usually labeled “Stay Awake” or the likes.

Configuring Your Operating System for Device
Debugging
To install and debug Android applications on hardware such as the T-Mobile G1,

Motorola Droid, or Nexus One, you might need to configure your operating system

to access the phone via USB. This is especially true of Windows machines. The

Android SDK ships with drivers for some devices, and you can simply point the

Device Manager at the directory where you installed the Android SDK and then plug

in the phone via USB, and it will show up when you launch an application via

Eclipse.

Notes on Windows Installations
You need to install Android USB drivers. You will find them as one of the packages

in the Android SDK and AVD Manager, under USB Driver Package. Alternatively,

you can download them separately from http://developer.android.com/sdk/

win-usb.html. After you unzip the drivers, connect your phone to your computer via

the USB cable and select the drivers you want to install.

Notes on Mac OS X Installations
On a supported Mac, all you have to do is plug in the USB cable to the Mac and the

device. There is no additional configuration needed.

Notes on Linux OS Installations
Ubuntu Linux installations require a rules file, using the following steps:

1. Log in as root administrator.

2. Create the file /etc/udev/rules.d/50-android.rules.

3a. For Gutsy (7.10)/Hardy (8.04) Ubuntu Linux installations, the file should con-

tain SUBSYSTEM==”usb”, SYSFS{idVendor}==”0bb4”, MODE=”0666”.

3b. For Dapper (6.06) Ubuntu Linux installations, the file should contain SUBSYS-

TEM==”usb_device”, SYSFS{idVendor}==”0bb4”, MODE=”0666”.

4. Enter chmod a+rx /etc/udev/rules.d/50-android.rules.

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html

ptg

Do you have your own tips or tricks for Android development in Eclipse? If so, email
them to us (with permission to publish them) at androidwirelessdev@gmail.com, and
they may be included on our blog at http://androidbook.blogspot.com. Get your moment
of geekly fame!

Creating New Classes and Methods
You can quickly create a new class and corresponding source file by right-clicking the

package to create it and choosing New, Class. Then you enter the class name, pick a

superclass and interfaces, and choose whether to create default comments and method

stubs for the superclass for constructors or abstract methods.

Along these lines, you can quickly create method stubs by right-clicking a class or within a

class in the editor and choosing Source, Override/Implement Methods. Then you choose

the methods to create stubs for, where to create them, and whether to generate default

comment blocks.

Organizing Imports
When referencing a class in your code for the first time, you can hover over the newly

used class name and choose “Import ‘Classname’ (package name)” to have Eclipse quickly

add the proper import statement.

In addition, the Organize imports command (Ctrl+Shift+O in Windows or Cmd+Shift+O

on a Mac) causes Eclipse to automatically organize your imports. Eclipse removes unused

imports and adds new ones for packages used but not already imported.

If there is any ambiguity in the name of a class during automatic import, such as with the

Android Log class, Eclipse prompts you with the package to import.

APPENDIX B

Eclipse IDE Tips and Tricks

In this appendix, a variety of tips and tricks for Eclipse are offered for your enjoyment and

benefit. These tips and tricks are geared toward tasks performed frequently while develop-

ing Android applications but may also apply to other Java development in Eclipse.

By the
Way

http://androidbook.blogspot.com

ptg

416 APPENDIX B: Eclipse IDE Tips and Tricks

Finally, you can configure Eclipse to automatically organize the imports each time

you save a file. This can be set for the entire workspace or for an individual project.

Configuring this for an individual project allows better flexibility when you’re work-

ing on multiple projects and don’t want to make changes to some code, even if they

are an improvement. To configure this, perform the following steps:

1. Right-click the project and choose Properties.

2. Expand Java Editor and choose Save Actions.

3. Check Enable Project Specific Settings, Perform the Selected Actions on Save,

and Organize Imports.

Documenting Code
Regular code comments are useful (when done right). Comments in Javadoc style

appear in code completion dialogs and other places, thus making them even more

useful. To quickly add a Javadoc comment to a method or class, simply press

Ctrl+Shift+J in Windows (or Cmd+Alt+J on a Mac). Alternatively, you can choose

Source, Generate Element Comment to prefill certain fields in the Javadoc, such as

parameter names and author, thus speeding up the creation of this style of com-

ment.

Using Auto-Complete
Auto-complete is a great feature that speeds up text entry. If this feature hasn’t

appeared for you yet or has gone away, you can bring it up by pressing Ctrl+space-

bar.

Auto-complete not only saves time in typing but can be used to jog your memory

about methods—or find a new method. You can scroll through all the methods of a

class and even see the associated Javadocs with them. You can easily find static

methods by using the class name or the instance variable name. You follow this

name with a dot (and maybe Ctrl+spacebar) and then scroll through all the names.

Then you can start typing the first part of a name to filter the results.

Editing Code Efficiently
Sometimes, you might find that the editor window is just too small, especially with

all the extra little metadata windows and tabs surrounding it. Try this: Double-click

ptg

Renaming Almost Anything 417

the tab of the source file that you want to edit. Boom! It’s now nearly the full Eclipse

window size! Just double-click to return it to normal.

Ever wish you could see two source files at once? Well, you can! Simply grab the tab

for a source file and either drag it over to the edge of the editor area or to the bot-

tom. You then see a dark outline, showing where the file will be docked—either side-

by-side with another file or above or below another file. This creates a parallel editor

area where other file tabs can be dragged, as well.

Ever wish you could see two places at once in the same source file? You can! Right-

click the tab for the file in question and choose New Editor. A second editor tab for

the same file comes up. With the previous tip, you can now have two different views

of the same file.

Ever feel like you get far too many tabs open for files you’re no longer editing? I do!

There are a number of solutions to this problem. First, you can right-click a file tab

and choose Close Others to close all other open files besides the chosen one. You can

quickly close specific tabs by middle-clicking with a mouse on each tab. (This even

works on a Mac with a mouse that can middle click, such as one with a scroll wheel.)

Finally, you can use the Eclipse setting that limits the number of open file editors:

1. Open Eclipse’s Preferences dialog.

2. Expand General, choose Editors, and check Close Editors Automatically.

3. Edit the value in Number of Opened Editors Before Closing.

I find eight to be a good number to use for the Number of Opened Editors Before

Closing option to keep the clutter down, but have enough editors open to still get

work done and have reference code open. Note also that if you check Open New

Editor under When All Editors Are Dirty or Pinned, more files will be open if you’re

actively editing more than the number chosen. Thus, this setting doesn’t affect pro-

ductivity when you’re editing a large number of files all at once but can keep things

clean during most normal tasks.

Renaming Almost Anything
Eclipse’s Rename tool is quite powerful. It can be used to rename variables, methods,

class names, and more. Most often, you can simply right-click the item you want to

rename and then choose Refactor, Rename. Alternatively, after selecting the item,

you can press Ctrl+Alt+R in Windows (or Cmd+Alt+R on a Mac) to begin the renam-

ing process. If you are renaming a top-level class in a file, the filename will have to

be changed as well. Eclipse usually handles the source control changes required to

do this, if the file is being tracked by source control.

ptg

418 APPENDIX B: Eclipse IDE Tips and Tricks

If Eclipse can determine that the item is in reference to the identically named item

being renamed, all instances of the name will be renamed as well. Occasionally, this

even means comments are updated with the new name. Quite handy!

Formatting Code
Eclipse has a built-in mechanism for formatting Java code. Formatting code with a

tool is useful for keeping the style consistent, applying a new style to old code, or

matching styles with a different client or target (such as a book or an article).

To quickly format a small block of code, select the code and press Ctrl-Shift+F in

Windows (or Cmd+Shift+F on a Mac). The code is formatted to the current settings. If

no code is selected, the entire file is formatted. Occasionally, you need to select more

code—such as an entire method—to get the indentation levels and brace matching

correct.

The Eclipse formatting settings are found in the Properties pane under Java Code

Style, Formatter. You can configure these settings on a per-project or workspace-wide

basis. Dozens of rules can be applied and modified to suite your own style.

Organizing Code
Sometimes, formatting code isn’t enough to make it clean and readable. Over the

course of developing a complex activity, you might end up with a number of

embedded classes and methods strewn about the file. A quick Eclipse trick comes to

the rescue: With the file in question open, make sure the outline view is also visible.

Simply click and drag methods and classes around in the outline view to place them

in a suitable logical order. Do you have a method that is only called from a certain

class but available to all? Just drag it in to that class. This works with almost any-

thing listed in the outline, including classes, methods, and variables.

Fun with Refactoring
Do you find yourself writing a whole bunch of repeating sections of code that look,

for instance, like this:

TextView nameCol = new TextView(this);
nameCol.setTextColor(getResources().getColor(R.color.title_color));
nameCol.setTextSize(getResources().

getDimension(R.dimen.help_text_size));
nameCol.setText(scoreUserName);
table.addView(nameCol);

ptg

Fun with Refactoring 419

This code sets text color, text size, and text. If you’ve written two or more blocks that

look like this, your code could benefit from refactoring. Eclipse provides two very

useful tools—Extract Local Variable and Extract Method—to speed up this task and

make it almost trivial.

Follow these steps to use the Extract Local Variable tool:

1. Select the expression getResources().getColor(R.color.title_color).

2. Right-click and choose Refactor, Extract Local Variable (or press Ctrl+Alt+L).

3. In the dialog that appears, enter a name for the variable and leave the

Replace All Occurrences check box selected. Then click OK and watch the

magic happen.

4. Repeat steps 1–3 for the text size.

The result should now look like this:

int textColor = getResources().getColor(R.color.title_color);
float textSize = getResources().getDimension(R.dimen.help_text_size);
TextView nameCol = new TextView(this);
nameCol.setTextSize(textSize);
nameCol.setText(scoreUserName);
nameCol.setTextColor(textColor);
table.addView(nameCol);

All repeated sections of the last five lines also have this change made. How conven-

ient is this?

Now you’re ready for the second tool. Follow these steps to use the Extract Method

tool:

1. Select all five lines of the first block of code.

2. Right-click and choose Refactor, Extract Method (or choose Ctrl+Alt+M).

3. Name the method and edit the variable names anything you want. (Move

them up or down, too, if desired.) Then click OK and watch the magic hap-

pen. By default, the new method is below your current one.

If the other blocks of code are actually identical, meaning the statements of the

other blocks must be in the exact same order, the types are all the same, and so on,

they will also be replaced with calls to this new method! You can see this in the

count of additional occurrences shown in the dialog for the Extract Method tool. If

that count doesn’t match what you expect, check that the code follows exactly the

same pattern.

ptg

420 APPENDIX B: Eclipse IDE Tips and Tricks

Now you have code that looks like the following:

addTextToRowWithValues(newRow, scoreUserName, textColor, textSize);

It is easier to work with this code than with the original code, and it was created

with almost no typing! If you had ten instances before refactoring, you’ve saved a

lot of time by using a useful Eclipse tool.

Resolving Mysterious Build Errors
Occasionally, you might find that Eclipse is finding build errors where there were

none just moments before. In such a situation, you can try a couple quick Eclipse

tricks.

First, try refreshing the project: Simply right-click the project and choose Refresh or

press F5. If this doesn’t work, try deleting the R.java file, which is found under the

gen directory under the name of the particular package being compiled. (Don’t

worry: This file is created during every compile.) If the Compile Automatically

option is enabled, the file is recreated. Otherwise, you need to compile the project

again.

Finally, you can try cleaning the project. To do this, choose Project, Clean and

choose the projects you want to clean. Eclipse removes all temporary files and then

rebuilds the project(s).

Creating Custom Log Filters
Every Android log statement includes a tag. These tags can be used with filters

defined in LogCat. To add a new filter, click the green plus sign button in the LogCat

pane. Name the filter—perhaps using the tag name—and fill in the tag you want to

use. Now there is another tab in LogCat that will show messages that contain this

tag. In addition, you can create filters that display items by severity level.

Android convention has largely settled on creating tags based on the name of the

class. You see this frequently in the code provided with this book. Note that we cre-

ate a constant in each class with the same variable name to simplify each logging

call. Here’s an example:

public static final String DEBUG_TAG = “MyClassName”;

This convention isn’t a requirement, though. Tags could be organized around specif-

ic tasks that span many activities or could use any other logical organization that

works for your needs.

ptg

Integrating Source Control 421

Moving Tabs Around
Eclipse provides some pretty decent layouts with the default perspectives. However,

not everyone works the same way and, with Android, a few perspectives have poor

default layouts for us.

For instance, the Properties tab is usually found on the bottom. For code, this works

fine because this tab is only a few lines high. But for layouts in Android, this doesn’t

work so well.

Luckily, in Eclipse this is easy to fix: Simply drag the tab by left-clicking and holding

on the tab (the title) itself and dragging it to a new location, such as the vertical sec-

tion on the right side of the Eclipse window. This provides the much-needed vertical

space to see the dozens of properties often found there.

You can experiment to find a tab layout that works well for you. Each perspective

has its own layout, too, and the perspectives can be task oriented. If you completely

mess up a perspective, or just want a clean start, you can simply choose Window,

Reset Perspective.

Integrating Source Control
Eclipse has the ability to integrate with many source control packages through add-

ons. This allows Eclipse to manage checking out a file—making it writable—when

you first start to edit a file, checking a file in, updating a file, showing a file’s status,

and a number of other tasks, depending on the support of the add-on. Common

source control add-ons are available for CVS, Subversion, Perforce, git, and many

other packages.

Generally speaking, not all files are suitable for source control. For Android projects,

any file with the bin and gen directories shouldn’t be in source control.

To exclude these generically within Eclipse, go to Preferences, Team, Ignored

Resources. Add *.apk, *.ap_, and *.dex by clicking the Add Pattern button and

adding one at a time.

ptg

This page intentionally left blank

ptg

APPENDIX C

Supplementary Materials

A number of supplementary materials have been developed to accompany this book.

These materials, such as source code for many of the examples provided in the book, are

available online. There are also a number of other online resources available for Android

developers.

Accessing the Publisher’s Website
The source code that accompanies this book is available for download from the publisher’s

website (see Figure C.1), http://www.informit.com/title/9780321673350:

FIGURE C.1
The InformIT
website.

Here’s what you’ll find on the publisher’s website:

. A thorough description of this book

. Downloadable source code

http://www.informit.com/title/9780321673350

ptg

424 APPENDIX C: Supplementary Materials

. Errata and book updates

. InformIT users’ reviews of the book

. Sample content

. Other related books

Accessing the Authors’ Website
The authors’ book website, at http://androidbook.blogspot.com, is a comprehensive

guide for designing, developing, debugging, and distributing Android applications

(see Figure C.2).

FIGURE C.2
The Android
Mobile
Application
Development
website.

Here’s what you’ll find on the authors’ website:

. Information about Android SDK updates

. Market news and information related to Android and other mobile

technologies

. Tips, tricks, and pitfalls of Android development

. Links to public reviews of this book

. Supplemental code examples

http://androidbook.blogspot.com

ptg

Leveraging Online Android Resources 425

. Informal discussions of more advanced Android development topics

. Links to other Android materials written by the authors, including their more

advanced Android book and technical articles available online

Contacting the Authors

Send the authors feedback
at androidwirelessdev

@gmail.com!

We welcome your feedback! If you have

comments, questions, or concerns about the

content of this book, you can email us

(Lauren and Shane) at

androidwirelessdev@gmail.com (see Figure

C.3). We do our best to answer each and

every query and often post commonly asked

questions and their answers on the book

website at : http://androidbook.blogspot.com.

FIGURE C.3
Send us feedback!

Leveraging Online Android Resources
The Android developer community is friendly and helpful. Here are a number of

useful websites for Android developers and followers of the wireless industry in

general:

. Android Developer Website—The Android SDK, developer reference site, and

forums: http://developer.android.com

. Open Handset Alliance—Android manufacturers, operators, and developers:

http://www.openhandsetalliance.com

. Android Market—Buy and sell Android applications:

http://market.android.com/publish

. OpenIntents—An Android developer resource with a public intent registry

as well as source for third-party Android libraries and extensions:

http://openintents.org

. anddev.org—An Android developer forum: http://www.anddev.org

. FierceDeveloper—A weekly newsletter for wireless developers:

http://www.fiercedeveloper.com

http://developer.android.com
http://www.openhandsetalliance.com
http://market.android.com/publish
http://openintents.org
http://www.anddev.org
http://www.fiercedeveloper.com
http://androidbook.blogspot.com

ptg

426 APPENDIX C: Supplementary Materials

. Stack Overflow: Android—A collaborative site for programmers, with an offi-

cial section for Android: http://stackoverflow.com/questions/tagged/android

. Wireless Developer Network—A daily news digest for the wireless industry:

http://www.wirelessdevnet.com

. Developer.com—A developer-oriented site that publishes technical articles:

http://www.developer.com

http://www.wirelessdevnet.com
http://www.developer.com
http://stackoverflow.com/questions/tagged/android

ptg

A

aapt (Android Asset Packaging

Tool), 39

AbsoluteLayout control, 115

accelerometer, 362

accessing

application functionality with
contexts, 47

application preferences,
46-47

layouts, 71

LBS (location-based services)

last known location, 245

providers, 244

network services

HTTP networking, 261-262

network permissions, 260

network status, checking,
260-261

phone status information

retrieving telephony
information, 279-280

setting phone state
permissions, 278

raw files, 72-73

strings, 64

XML files, 72

accounts, Android Market

developer accounts

benefits, 402

signing up for, 396-397

ACTION_CHOOSER intent, 226

ACTION_IMAGE_CAPTURE intent,

225-226, 230

ACTION_VIEW intent, 248

activities

activity requirements,
determining, 96-97

adding options menus
to, 139

callback methods, 49-50

designating launch activity,
87-88

explained, 47

implementing for Been There,
Done That! game, 105-106

launching, 48-49

managing state, 49

preferences, 110

Index

ptg

registering, 86-87, 92

saving state, 50-51

activity dialogs. See dialogs

<activity> tag, 86-87

ActivityUnitTestCase class, 379

adb (Android Debug Bridge),

39, 391

addresses, translating, 247

addTab() method, 155

addTextChangedListener()

method, 169

ADT (Android Development Tools)

Android Project Wizard, 10-11

installing, 412-413

overview, 9

afterTextChanged() method, 191

AIDL Compiler, 39

AlertDialog, 182

alerting users with notifications,

348-349

AndAppStore, 404

anddev.org, 425

Android Asset Packaging Tool

(aapt), 39

Android Debug Bridge (adb),

39, 391

Android developer program, 8-9

Android developer website,

364, 425

Android Development Tools

(ADT). See ADT

Android documentation, 27-29

Android Hierarchy Viewer, 38

Android Market, 8, 425

billing, 401

developer account
benefits, 402

developer accounts

benefits, 402

signing up for, 396-397

explained, 395

language support, 405

locales, 326-327

removing applications
from, 402

return policy, 401-402

uploading applications to,
397-400

Android mascot, 8

Android Mobile Application

Development website, 424-425

Android NDK, 23

Android Plug-in for Eclipse (ADT),

installing, 412-413

Android Project command (New

menu), 10

Android Project Wizard, 10-11

Android SDK

defining, 343

detecting
programmatically, 343

installing, 10

explained, 411

Linux installations, 412

Mac OS X
installations, 412

Windows
installations, 411

setting minimum Android SDK
version, 83

specifying target SDK, 342

upgrading, 413

versions, 341-342

Android Virtual Devices.

See AVDs

Android Wireless Application

Development, 73,

251, 364

android.bluetooth package, 363

android.database package, 359

android.database.sqlite

package, 359

android.gesture package, 352

android.graphics package, 355

android.media package, 353

android.provider package, 360

android.sax.* package, 72

android.service.wallpaper

package, 357

android.speech.Recognizer

Intent, 353

android.speech.tts package, 352

android.util.Xml.* package, 72

AndroidManifest.xml file, 12-15

activities

designating launch
activity, 87-88

registering, 86-87, 92

application permissions,
managing, 88-92

application settings,
configuring

linking secondary
libraries, 82

naming Android
packages, 82

naming applications, 84

providing application
descriptions, 85

providing application
icons, 84

428

activities

ptg

setting debug information
for applications, 85

setting minimum Android
SDK version, 83

versioning
applications, 82

designating launch activity
in, 48

editing with Eclipse manifest
file resource editor

AndroidManifest.xml
tab, 81

Application tab, 78-79

Instrumentation tab, 80

Manifest tab, 78-79

Permissions tab, 79-80

explained, 77-78

<manifest> tag, 82

preparing for release,
385-386

<receiver> tag, 307

<uses-library> tag, 82

updating for App
Widgets, 307

versioning applications, 83

android:debuggable attribute

(<application> tag), 85

android:description attribute

(<application> tag), 85

android:icon attribute

(<application> tag), 84

android:label attribute

(<application> tag), 84

android:minSdkVersion attribute

(<uses-sdk> tag), 83

android:versionCode attribute

(<manifest> tag), 82

android:versionName attribute

(<manifest> tag), 82

animation

adding to splash screens,
120-121

animating all views in layout,
122-123

animating specific views,
121-122

handling animation life cycle
events, 123

ImageSwitcher control, 207

performance issues, 124

types of, 119-120

annotations, @UiThreadTest, 378

App Widgets

adding to Home screen,
312-313

Android manifest file
updates, 307

AppWidgetProvider class
implementation, 309-311

background operations,
314-315

creating services,
316-317

starting/stopping
services, 317-318

controls, 318

event handling, 313-314

explained, 305-306

layout, 308

methods, 309

multiple instances of, 319

properties, 306-307

RemoteViews object, 311

application assets

compared to project
resource, 74

definition of, 73

application contexts

accessing application
functionality, 47

accessing application
preferences, 46-47

launching activities with, 48

retrieving application
resources, 46

retrieving context for current
process, 46

Application Manager, 109

application resources

definition of, 59

referencing, 62

storing, 60-62

application servers, 256-257

application sliding drawer, 37

Application tab (manifest file),

14, 78-79

<application> tag

android:debuggable
attribute, 85

android:description
attribute, 85

android:icon attribute, 84

android:label attribute, 84

applications

activities

callback methods, 49-50

explained, 47

launching, 48-49

managing state, 49

saving state, 50-51

How can we make this index more useful? Email us at indexes@samspublishing.com

applications

429

ptg

application assets

compared to project
resource, 74

definition of, 73

application contexts

accessing application
functionality, 47

accessing application
preferences, 46-47

retrieving application
resources, 46

retrieving context for
current process, 46

application information,
logging, 374

application resources

definition of, 59

referencing, 62

storing, 60-62

avatars

adding to settings screen
layout, 219-220

bitmaps, 228-230

designing, 217-219

gallery, 227-228

ImageButton controls,
221-223

launching activities
and handling results,
224-225

photo-taking with camera,
225-227

Been There, Done That!
game. See Been There,
Done That! application

configuring application
settings

linking secondary
libraries, 82

naming Android
packages, 82

naming applications, 84

providing application
description, 85

providing application
icons, 84

setting debug
information, 85

setting minimum Android
SDK version, 83

version code, 82

version name, 82

versioning applications,
82-83

context menus, 138

copy protection, 406

designing

application activity
requirements, 44-45

application features,
43-44

application functionality,
45-46

for response during
low-memory
conditions, 55

dialogs. See dialogs

game logic

addressing edge cases,
213-214

declaring string literals for
question parsing, 209

handling button presses,
211-212

storing questions in
hashtable, 210

updating
SharedPreferences to
include game state
settings, 208-209

game screens

adding resources to,
200-202

designing, 197-200

updating layout of,
202-203

help screens

adding resources to,
145-146

designing, 144

raw resource files,
147-148

updating layout of, 146

installing, 390-391

intents

explained, 51

launching other
applications with, 52-53

passing information with,
51-52

internationalizing application
names, 92

launching

in emulator, 109

with intents, 52-53

layouts

accessing
programmatically, 71

designing with Layout
Resource Editor, 68-70

430

applications

ptg

designing with XML, 69

explained, 67-68

logging application
information, 54

main menu screens

adding project
resources, 131

designing, 127-130

layout requirements, 129

ListView control, 129,
134-137

screen headers, building
with RelativeLayout, 129

updating layouts, 132-133

naming, 84

options menus

adding resources to,
138-139

adding to activities, 139

handling menu
selections, 140

permissions, 347

including in Android
manifest file, 92

managing, 88-91

prototypes

activities, implementing,
105-106

activity requirements,
96-97

application preferences,
creating, 106-108

creating new project, 103

debug configuration, 108

game screen
features, 102

help screen features,
98-99

high-level game
features, 96

main menu screen
features, 98

project resources,
adding, 104

scores screen
features, 100

settings screen features,
100-101

splash screen features,
97-98

providing descriptions for, 85

providing icons for, 84

publishing. See publishing

removing from Android
Market, 402

responsiveness, 367

scores screens

adding resources to,
151-152

completed scores
screen, 157

delays in loading, 158

designing, 149

layout requirements, 150

TabHost control, 150, 155

updating layout of,
152-154

security, 367

setting debug information
for, 85

settings screens

adding resources to,
165-166

Button controls, 170-172

designing, 161-163

EditText controls, 168-170

SharedPreferences,
175-178

Spinner controls, 172-174

updating layout of,
166-167

splash screens

adding resources to,
116-117

animation, 119-124

designing, 113-114

Layout controls, 114-116

updating layout of,
117-119

stability, 367

testing, 40

automated testing,
373-380

best practices, 367-370

on emulator, 372

managing test
environment, 371-372

on target handsets, 373

types of testing, 370

uploading to Android Market,
397-400

verifying, 391-392

version code, setting, 82

version name, setting, 82

ViewSwitcher controls,
203-204

generating with
ViewFactory, 204-205

ImageSwitcher, 206-207

TextSwitcher, 205

ApplicationTestCase class, 379

How can we make this index more useful? Email us at indexes@samspublishing.com

ApplicationTestCase class

431

ptg

AppWidgetProvider class,

309-311

ARCHOS 5 Internet tablet, 402

assertTrue() method, 377

assets

compared to project
resources, 74

definition of, 73

/assets folder, 12

asynchronous tasks, running

with AsyncTask class,
265-266

with threads and
handlers, 266

AsyncTask class, 265-266,

282-285, 288, 297-298

audio, 353

authors’ contact information, 425

authors’ website, 424-425

Auto-complete feature, 416

automated testing, 373

adding more tests, 379-380

creating test cases, 375-377

creating test projects,
374-375

explained, 374

logging application
information, 374

running automated tests,
378-379

availability of servers,

checking, 261

avatars

adding to settings screen
layout, 219-220

bitmaps

generating, 229

saving, 228-229

scaling, 229-230

transformations, 230

designing, 217-219

gallery, 227-228

ImageButton controls

handling events, 222-223

setting images of,
221-222

launching activities and
handling results, 224-225

photo-taking with camera,
225-227

uploading, 288

AVDs (Android Virtual Devices)

advantages, 24

creating, 17-18, 241

B

background operations

in App Widgets, 314-315

creating services,
316-317

starting/stopping
services, 317-318

handling, 268-269, 273

backward compatibility,

designing for, 342

battery life, 363

BATTERY_STATS permission, 363

Been There, Done

That! application

activities, 96-97, 105-106

activity dialogs, 181

AlertDialog class, 182

CharacterPickerDialog
class, 182

custom password dialog,
188-193

DatePickerDialog class,
182-187

defining, 183

Dialog class, 182

dismissing, 184

initializing, 183

launching, 183

life cycle of, 182-183

ProgressDialog class, 182

removing from use, 184

TimePickerDialog
class, 182

App Widget

adding to Home screen,
312-313

Android manifest file
updates, 307

AppWidgetProvider
class implementation,
309-311

background operations,
314-318

controls, 318

event handling, 313-314

explained, 305-306

layout, 308

methods, 309

multiple instances of, 319

properties, 306-307

RemoteViews object, 311

application preferences

creating, 106-107

retrieving shared
preferences, 107-108

saving shared
preferences, 107

432

AppWidgetProvider class

ptg

avatars

adding to settings screen
layout, 219-220

bitmaps, 228-230

designing, 217-219

gallery, 227-228

ImageButton controls,
221-223

launching activities
and handling results,
224-225

photo-taking with camera,
225-227

context menus, 138

creating new project, 103

debug configuration, 108

explained, 95

favorite place feature

accessing LBS
(location-based
services), 244-245

designing, 233-234

dialog, 235-237

enabling location testing
on emulator, 241-243

geocoding services,
246-247

guidelines for LBS
(location-based
services), 240-241

implementing framework
for, 237-240

layout updates, 234-235

maps, 248-251

receiving location
updates, 245

friend support

displaying friends’
scores, 298

enabling friend requests,
293-298

enhancing player
relationships, 299-300

explained, 292-293

game logic

addressing edge cases,
213-214

declaring string literals for
question parsing, 209

handling button presses,
211-212

storing questions in
hashtable, 210

updating
SharedPreferences
to include game state
settings, 208-209

game screen, 102

adding resources to,
200-202

designing, 197-200

updating layout of,
202-203

help screen, 98-99

adding resources to,
145-146

designing, 144

raw resource files,
147-148

updating layout of, 146

high-level game features,
determining, 96

internationalization, 325-326

launching in emulator, 109

main menu, 98

adding project
resources, 131

designing, 127-130

layout requirements, 129

ListView control, 129,
134-137

screen headers, building
with RelativeLayout, 129

updating layouts, 132-133

network support. See

network applications

options menus

adding resources to,
138-139

adding to activities, 139

handling menu
selections, 140

project resources, adding,
103-104

scores screen, 100

adding resources to,
151-152

completed scores
screen, 157

delays in loading, 158

designing, 149

layout requirements, 150

TabHost control, 150, 155

updating layout of,
152-154

settings screen, 100-101

adding resources to,
165-166

Button controls, 170-172

designing, 161-163

EditText controls, 168-170

How can we make this index more useful? Email us at indexes@samspublishing.com

Been There, Done That! application

433

ptg

SharedPreferences,
175-178

Spinner controls, 172-174

updating layout of,
166-167

splash screen, 97-98

adding resources to,
116-117

animation, 119-123

designing, 113-114

Layout controls, 114-116

updating layout of,
117-119

ViewSwitcher controls,
203-204

generating with
ViewFactory, 204-205

ImageSwitcher, 206-207

TextSwitcher, 205

billing (Android Market), 401

bindService() method, 317

bitmaps

generating, 229

saving, 228-229

scaling, 229-230

transformations, 230

Blog tab (Android

documentation), 28

Bluetooth, 363

BroadcastReceiver class, 363

Browser application, 37

Browser content provider, 360

browsing file system with

DDMS, 31

build errors, resolving, 420

Button controls

configuring, 170-171

handling button clicks,
171-172

buttons

handling button presses,
211-212

Upload Application, 397

Button_Friend_Email control, 296

C

call state information,

retrieving, 279

callback methods (activities),

49-50

CallLog, 360

camera, 225-227

cancellation, handling, 270-271

CDMA phones, determining,

279-280

certificate authorities, 388

certification programs, 380

changing locales, 324

CharacterPickerDialog, 182

checking

network status, 260-261

server availability, 261

Chippy’s Revenge game

activity requirements, 44-45

application features, 43-44

application functionality,
45-46

choosing

target languages, 331

target locales, 331

target platform, 342

Class command (New

menu), 415

classes. See specific classes

Clean command (Project

menu), 420

clearAnimation() method,

122-123

clearing progress indicators, 270

clicks, handling, 171-172

client/server testing, 370

code comments, 416

code editing, 416-417

code formatting, 418

code organization, 418

coding standards, 368

colors

explained, 64-65

retrieving, 65

supported color formats, 65

commands

Class (New menu), 415

Clean (Project menu), 420

Override/Implement Methods
(Source menu), 415

comments, 416

commit() method, 212

committing EditText input, 169

Community tab (Android

documentation), 28

compress() method, 228

434

Been There, Done That! application

ptg

configuration management,

333-335

debugging

device debugging, 414

USB debugging, 413-414

EditText controls, 168

power settings, 363

ringtones, 356

Spinner controls, 173

TabHost control, 155

wallpaper, 356-357

conformance testing, 370

ConnectivityManager class, 261

contacting authors, 425

Contacts application, 37

Contacts content provider, 360

contains() method, 177

containsKey() method, 210

content providers

Browser, 360

CallLog, 360

Contacts, 360

explained, 360-361

live folders, 361

MediaStore, 360

UserDictionary, 360

context menus, 138

Context object

getConfiguration()
method, 329

getSystemService() method,
261, 279

launching activities with, 48

retrieving context for current
process, 46

controls. See specific controls

coordinates, translating, 247

copy protection, 406

Create New Project in Workspace

button (New Android Project

dialog), 10

Create Project from Existing

Sample button (New Android

Project dialog), 13

Create Project from Existing

Source button (New Android

Project dialog), 13

create() method, 193

createChooser() method, 226

createFromResource()

method, 173

createScaledBitmap()

method, 229

Cube Live Wallpaper, 357

currency

Currency class, 330

internationalization, 330

Currency class, 330

custom dividers, adding to

ListView, 136

custom log filters, 420

custom password dialog

adding to QuizSettingsActivity
class, 190-193

designing, 188-189

implementing layout, 190

launching, 193

custom selectors, adding to

ListView, 137

custom views, 350

D

d() method (Log class), 54

Dalvik Debug Monitor Service.

See DDMS

databases

handset databases, 372

SQLite databases, 359

DateFormat class, 330

DatePickerDialog, 182-184

adding to QuizSettingsActivity
class, 184-185

initializing, 185-186

launching, 186-187

date internationalization, 330

DDMS (Dalvik Debug Monitor

Service)

browsing file system with, 31

debugging Android
applications with, 21-22

debugging applications with,
29-30

Emulator Control, 31-33

explained, 39

File Explorer, 31

managing tasks, 30

managing tasks with, 30

Screen Capture button, 33-34

simulating incoming calls to
emulator, 31-32

simulating incoming SMS
messages to emulator, 33

taking screenshots of
emulator or handset, 33-34

viewing log information, 35

How can we make this index more useful? Email us at indexes@samspublishing.com

DDMS (Dalvik Debug Monitor Service)

435

ptg

debugging

Android applications with
DDMS, 21-22, 29-30

debug configuration, 108

debug information, setting for
applications, 85

device debugging, 414

USB debugging, 413-414

default resources, specifying, 325

default tabs, setting, 155

default.properties file, 12

defect tracking systems, 369

defects, 369

defining Android SDK, 343

deleteFile() method, 359

descriptions, adding to

applications, 85

designating launch activity, 87-88

designing applications

activity requirements, 44-45,
96-97

App Widget layouts, 308

application features, 43-44

application functionality,
45-46

avatars, 217-219

backward compatibility, 342

favorite place feature,
233-234

game screens, 102, 197-200

help screens, 98-99, 144

high-level game features, 96

layouts

with Layout Resource
Editor, 68-70

with XML, 69

main menu screens, 98

network applications

application servers,
256-257

explained, 255-256

progress bars, 257

password dialog, 188-189

response during low-memory
conditions, 55

scores screens, 100, 149

settings screens, 100-101,
161-163

splash screens, 97-98,
113-114

input forms, 55

detecting SDK

programmatically, 343

determinate progress, displaying

with progress bars, 263

determining locales, 329-330

Dev Guide tab (Android

documentation), 28

Dev Tools, 38, 110

developer accounts (Android

Market)

benefits, 402

signing up for, 396-397

Developer Challenges, 9

Developer.com, 426

developing network applications,

257-258

device fragmentation, 371-372

devices

debugging, 414

developing for Android SDKs,
341-342

choosing application’s
target platform, 342

defining Android SDK, 343

designing for backward
compatibility, 342

detecting SDK
programmatically, 343

specifying target
SDK, 342

developing for different
devices

configuration
management, 333-335

handset features, 341

screen orientations,
335-339, 344

Dialer application, 37

Dialog class, 182

dialogs, 53-54, 181

AlertDialog, 182

CharacterPickerDialog, 182

custom password dialog

adding to
QuizSettingsActivity
class, 190-193

designing, 188-189

implementing layout, 190

launching, 193

DatePickerDialog, 182

adding to
QuizSettingsActivity
class, 184-185

initializing, 185-186

launching, 186-187

DatePickerDialog class, 184

defining, 183

Dialog, 182

dismissing, 184

favorite place dialog, 235-237

initializing, 183

436

debugging

ptg

launching, 183

life cycle of, 182-183

methods, 53

ProgressDialog, 182

removing from use, 184

TimePickerDialog, 182

digital signatures, 387-390

dimensions, 65-66

directories

/assets, 12

explained, 358

/layout, 15

live folders, 361

/res, 12, 15-16, 62

/res/drawable, 13

resource directory qualifiers,
334-335

/src, 12

/values, 16

dismiss() method, 264

dismissDialog() method, 53,

183-184

dismissing

dialogs, 184

progress dialog, 273

displaying scores, 267

background processing,
268-269

cancellation, 270-271

friends’ scores, 298

progress indicator, 268-270

progress updates, 269-270

ScoreDownloaderTask
class, 267

documentation, 27-29

code comments, 416

online versus local SDK
documentation, 40

doInBackground() method, 265,

268, 273, 283-285, 297

downloading

Android SDK, 9, 411

Eclipse IDE, 410

question batches, 271-273

scores

background processing,
268-269

cancellation, 270-271

progress indicator,
268-270

progress updates,
269-270

ScoreDownloaderTask
class, 267

Draw 9-Patch tool, 39

drawable resources

adding to Been There, Done
That! game, 104

images

loading, 67

ShapeDrawable class, 67

supported image formats,
66-67

Droid #1 project

creating, 10-11

creating debug and run con-
figurations, 18-19

debugging with DDMS, 21-22

editing project resources

AndroidManifest.xml file,
13-15

/res files, 15-16

string resources, 16

launching on handset, 22-23

launching with emulator,
19-21

project files, 12-13

E

e() method (Log class), 54

Eclipse IDE

Auto-complete feature, 416

automated testing with

adding more tests,
379-380

creating test cases,
375-377

creating test projects,
374-375

explained, 374

running automated tests,
378-379

build errors, resolving, 420

classes, creating, 415

code comments, 416

code editing, 416-417

code formatting, 418

code organization, 418

developing Android
applications without, 39

imports, organizing, 415-416

installing, 410

integrating with source
control packages, 421

log filters, 420

How can we make this index more useful? Email us at indexes@samspublishing.com

Eclipse IDE

437

ptg

manifest file resource editor

AndroidManifest.xml
tab, 81

Application tab, 78-79

Instrumentation tab, 80

Manifest tab, 78-79

Permissions tab, 79-80

methods, creating, 415

refactoring, 418-420

Rename tool, 417-418

tabs, rearranging, 421

edge-case testing, 370

editing

AndroidManifest.xml file

AndroidManifest.xml
tab, 81

Application tab, 78-79

Instrumentation tab, 80

Manifest tab, 78-79

Permissions tab, 79-80

code, 416-417

project resources

AndroidManifest.xml
file, 13-15

/res files, 15-16

string resources, 16

XML files, 24

EditText controls

committing EditText
input, 169

configuring, 168

handling text input, 168

listening for EditText key-
strokes, 169-170

elements. See tags

emulator

configuring location of, 241

enabling location testing on,
241-243

explained, 35

incoming calls, simulating
with DDMS, 31-32

incoming SMS messages,
simulating with DDMS, 33

launching Android
applications with, 19-21

launching applications
in, 109

limitations, 35

providing input to, 36

SD card images with, 38

skins, 38, 40

taking screenshots of, 33-34

testing network applications
on, 258

testing on, 372

Emulator Control (DDMS), 31-33

enabling

friend requests

AsyncTask class, 297-298

Friend Request
dialog, 296

settings screen layout,
293-295

location testing on emulator,
241-243

USB debugging, 413-414

enhancing player relationships,

299-300

errors, build errors, 420

events

handling animation life cycle
events, 123

handling in App Widgets,
313-314

ImageButton events, 222-223

ListView events

custom dividers, 136

custom selectors, 137

listening for, 135-136

execute() method, 267, 298

Export Android Application

command, 389

Extract Local Variable tool, 419

Extract Method tool, 419

F

Facebook Platform for

Mobile, 301

Facebook support, 300-301

fade_in.xml animation, 120

fade_in2.xml animation, 120

favorite place feature

accessing LBS (location-
based services), 244-245

designing, 233-234

dialog, 235-237

enabling location testing on
emulator, 241-243

geocoding services, 246-247

guidelines for LBS (location-
based services), 240-241

implementing framework for,
237-240

layout updates, 234-235

438

Eclipse IDE

ptg

maps

launching map
applications with
intents, 248-249

working with Google APIs,
250-251

receiving location
updates, 245

feasibility testing, 373

FierceDeveloper, 425

File Explorer (DDMS), 31

file system, browsing with

DDMS, 31

fileList() method, 359

files

AndroidManifest.xml. See

AndroidManifest.xml file

default.properties, 12

DroidActivity.java, 12

explained, 358

help.xml, 144

JAR files, 286-287

main.xml, 13

quizhelp.txt, 145

R.java class file, 12, 62

raw resource files, 72-73,
147-148

scores.xml, 150-154

strings.xml, 13

widget.xml, 308

XML files

accessing, 72

editing, 24

formatting, 71

parsing, 156-157

retrieving, 156

XML parsers, 74

filling ListView control, 134-135

filters, log filters, 420

findViewById() method, 54, 147,

155, 171-173, 191

finish() method, 51

firmware, troubleshooting, 343

folders. See directories

forgoing internationalization,

327-328

format() method, 187

formatting

code, 418

strings, 64

XML files, 71

forms

Button controls

configuring, 170-171

handling button clicks,
171-172

EditText controls

committing EditText
input, 169

configuring, 168

handling text input, 168

listening for EditText key-
strokes, 169-170

input forms, 55

saving form data with
SharedPreferences

defining
SharedPreferences
entries, 175

reading settings from,
177-178

saving settings to, 176

settings screens

adding resources to,
165-166

designing, 161-163

updating layout of,
166-167

Spinner controls, 172

configuring, 173

handling Spinner
selections, 173-174

listening for selection
events, 174

frame-by-frame animation, 119

FrameLayout control, 115

Friend Request dialog, 296

friend requests, enabling

AsyncTask class, 297-298

Friend Request dialog, 296

settings screen layout,
293-295

friend support

enabling friend requests

AsyncTask class, 297-298

Friend Request
dialog, 296

settings screen layout,
293-295

explained, 292-293

friends’ scores,
displaying, 298

FriendRequestTask class,

296-297

fromFile() method, 228

full internationalization, 328-329

functional testing, 370

How can we make this index more useful? Email us at indexes@samspublishing.com

functional testing

439

ptg

G

gallery, 227-228

game logic

addressing edge cases,
213-214

declaring string literals for
question parsing, 209

handling button presses,
211-212

storing questions in
hashtable, 210

updating SharedPreferences
to include game state
settings, 208-209

game screens

adding resources to, 200-202

defining features of, 102

designing, 197-200

updating layout of, 202-203

ViewSwitcher controls,
203-204

generating with
ViewFactory, 204-205

ImageSwitcher, 206-207

TextSwitcher, 205

/gen/com.androidbook.droid1/

R.java file, 12

generating bitmaps, 229

Geocoder class, 247

geocoding services, 246-247

gestures, handling, 351-352

GET method, 282-285

getActivity() method, 376

getApplicationContext()

method, 46

getAssets() method, 74

getAttributeValue() method, 157

getBestProvider() method, 244

getCacheDir() method, 359

getCallState() method, 279

getColor() method, 65

getConfiguration() method, 329

getDeviceId() method, 279

getDimension() method, 66

getDir() method, 359

getDrawable() method, 67

getFilesDir() method, 359

getFromLocation() method, 247

getFromLocationName()

method, 247

getIntent() method, 51

getLastKnownLocation()

method, 245

getLatitude() method, 245

getLongitude() method, 245

getNetworkInfo() method, 261

getNetworkType() method, 279

getOwnerActivity() method, 194

getPackageInfo() method, 392

getPhoneType() method, 279

getPreferences() method, 50, 110

getProvider() method, 244

getQuestionImageDrawable()

method, 206

getQuestionImageUrl()

method, 207

getResources() method, 62, 74

getSharedPreferences()

method, 46, 110

getSimOperator() method, 280

getSimOperatorName()

method, 280

getSimSerialNumber()

method, 280

getSimState() method, 280

getString() method, 64, 177

getSubscriberId() method, 280

getSystem() method, 63

getSystemService() method, 261,

279, 362-363

getText() method, 168, 176

getVoiceMailNumber()

method, 280

getWidgetData() method, 311

getXml() method, 72, 156

GIFs, animated GIFs, 119

global search, integrating

with, 361

Google APIs, 241, 250-251

Google APIs Add-On Reference

website, 251

Google App Engine, 256

Google Developer Challenges, 9

Google Maps, 241

Google Open Handset

Alliance, 7-8

graphics

android.graphics
package, 355

OpenGL ES graphics API, 355

GSM phones, determining,

279-280

H

handleAnswerAndShowNext

Question() method, 211

handleNoQuestions()

method, 213

440

gallery

ptg

Handler class, 266

handsets

handset databases, 372

launching Android
applications on, 22-23

supporting, 341

taking screenshots of, 33-34

target handsets

identifying and
acquiring, 371

testing on, 373

hardware

battery life, 363

Bluetooth, 363

power settings, 363

sensor data, reading, 362

testing network applications
on, 259

Wi-Fi, 363

hashtables, storing questions

in, 210

Hello, World application

creating debug and run con-
figurations, 18-19

creating project, 10-11

debugging with DDMS, 21-22

editing project resources

AndroidManifest.xml file,
13-15

/res files, 15-16

string resources, 16

launching on handset, 22-23

launching with emulator,
19-21

project files, 12-13

help screens

adding resources to, 145-146

defining features of, 98-99

designing, 144

raw resource files, 147-148

updating layout of, 146

HelpActivity class, 44

high-level game features,

determining, 96

history of Android, 8

Home screen

adding App Widgets to,
312-313

explained, 37

HTTP GET method, 282-285

HTTP networking, 261-262

HTTP POST method, 286-288

HttpClient class, 285-286

HttpGet class, 281-282

I

i() method (Log class), 54

icon attribute (<item>

element), 138

icons, adding to applications, 84

id attribute (<item>

element), 138

identifiers, 302

identifying target handsets, 371

image media, 223

gallery, 227-228

launching activities and han-
dling results, 224-225

photo-taking with camera,
225-227

ImageButton controls

handling events, 222-223

setting images of, 221-222

images

avatars

adding to settings screen
layout, 219-220

designing, 217-219

bitmaps

generating, 229

saving, 228-229

scaling, 229-230

transformations, 230

image media, 223

gallery, 227-228

launching activities
and handling results,
224-225

photo-taking with camera,
225-227

ImageButton controls,
221-223

loading, 67

SD card images, 38

ShapeDrawable class, 67

supported image formats,
66-67

ImageSwitcher controls

animating, 207

initializing, 206

updating, 207

ImageUploadTask class, 288

imports, organizing, 415-416

incoming calls to emulator,

simulating with DDMS, 31-32

incoming SMS messages to

emulator, simulating with

DDMS, 33

How can we make this index more useful? Email us at indexes@samspublishing.com

incoming SMS messages

441

ptg

indeterminate progress,

displaying with progress

bars, 263

inflate() method, 191

InformIT website, 423-424

integrating Eclipse IDE with

source control, 421

initializing

dialogs, 183-186

ImageSwitcher control, 206

TextSwitcher control, 205

input forms, designing, 55

input methods, 350

inputStreamToString()

method, 147

insertScoreRow() method, 270

installing

Android Plug-in for Eclipse
(ADT), 412-413

Android SDK, 10

explained, 411

Linux installations, 412

Mac OS X
installations, 412

Windows
installations, 411

applications, 390-391

Eclipse IDE, 410

JDK (Java Development
Kit), 410

Instrumentation tab (manifest

file), 14, 80

integration testing, 370

<intent-filter> tag, 87-88

intents

ACTION_CHOOSER, 226

ACTION_IMAGE_CAPTURE,
225-226, 230

ACTION_VIEW, 248

explained, 51

launching map applications
with, 248-249

launching other applications
with, 52-53

passing information
with, 51-52

TAKE_AVATAR_CAMERA_
REQUEST, 227

TAKE_AVATAR_GALLERY_
REQUEST, 228

internationalization

application names, 92

currency, 330

date/time formatting, 330

explained, 321-322

languages

choosing target
languages, 331

defined, 321

locales

Android Market support
for, 326-327

Android SDK support for,
322-323

changing, 324

choosing target
locales, 331

defined, 321

determining, 329-330

resources, specifying

default resources, 325

language-specific
resources, 325

region-specific
resources, 326

strategies

forgoing
internationalization,
327-328

full internationalization,
328-329

limited
internationalization, 328

testing, 370

troubleshooting, 331

isNetworkRoaming() method, 280

<item> element, 138

J-K

JAR files, adding to projects,

286-287

jarsigner utility, 390

Java Development Kit (JDK),

installing, 410

java.io package, 358

JavaScript Object Notation

(JSON), 289

javax.xml.* package, 72

JDK (Java Development Kit),

installing, 410

JSON (JavaScript Object

Notation), 289

JUnit

automated testing with

adding more tests,
379-380

creating test cases,
375-377

creating test projects,
374-375

442

indeterminate progress

ptg

explained, 374

running automated tests,
378-379

website, 380

keystrokes, EditText, 169-170

keytool utility, 390

L

landscape mode, creating custom

layout for, 335-337

languages

Android Market support
for, 405

choosing target
languages, 331

defined, 321

language-specific resources,
specifying, 325

last known location (LBS), 245

launch activity, designating,

87-88

launching

activities, 48-49

Android applications

with emulator, 19-21, 109

on handset, 22-23

with intents, 52-53,
248-249

dialogs, 183

custom password
dialog, 193

DatePickerDialog to,
186-187

Layout controls, 114-116

/layout folder, 15

Layout Resource Editor, 68-70

LayoutInflater class, 71

layouts

accessing
programmatically, 71

adding to Been There, Done
That! game, 104

App Widgets, 308

creating custom layout for
landscape mode, 335-337

designing

with Layout Resource
Editor, 68-70

with XML, 69

explained, 67-68

favorite place feature,
234-235

favorite place dialog, 236-237

help screens, 146

game screens, 202-203

Layout controls, 114-116

main menu screens

adding TextView template
layout, 133

layout requirements, 129

ListView control, 129-130

updating master layouts,
132-133

password dialog, 190

RelativeLayout control, 129

scores screens, 150-154

settings screens, 166-167

splash screen layouts,
117-119

LBS (Location-Based

Services), 352

accessing

last known location, 245

providers, 244

enabling location testing on
emulator, 241-243

favorite place feature

designing, 233-234

dialog, 235-237

implementing framework
for, 237-240

layout updates, 234-235

geocoding services, 246-247

guidelines for, 240-241

maps

launching map
applications with
intents, 248-249

working with Google
APIs, 250-251

receiving location
updates, 245

libraries

graphics libraries, 355

linking, 82

life cycles of activity dialogs,

182-183

light sensor, 362

limited internationalization, 328

LinearLayout control, 115, 132

linking secondary libraries, 82

Linux

Android SDK installation, 412

device debugging
configuration, 414

listen() method, 279

How can we make this index more useful? Email us at indexes@samspublishing.com

listen() method

443

ptg

listening

for EditText keystrokes,
169-170

for ListView events, 135-136

for screen orientation
changes, 338, 344

for selection events, 174

ListView control, 129-130

custom dividers, 136

custom selectors, 137

filling, 134-135

listening for ListView events,
135-136

live folders, 361

loading

images, 67

scores screen, 158

loadQuestionBatch() method, 273

locales

Android Market support for,
326-327

Android SDK support for,
322-323

changing, 324

choosing target locales, 331

currency, 330

date/time formatting, 330

defined, 321

determining, 329-330

resources, specifying

default resources, 325

language-specific
resources, 325

region-specific
resources, 326

location testing, enabling,

241-243

Location-Based Services

(LBS), 352

LocationManager class, 244

Log class, 54

log filters, 420

LogCat, 35

logic. See game logic

logs

filtering, 35

log methods, 54

logging application
information, 374

viewing log information, 35

low-memory conditions, 55

M

Mac OS X

Android SDK installation, 412

device debugging
configuration, 414

Eclipse IDE installation, 410

magnetic field sensor, 362

main menu screens

adding project resources, 131

defining features of, 98

designing, 127-130

layout requirements, 129

ListView control, 129-130

custom dividers, 136

custom selectors, 137

filling, 134-135

listening for ListView
events, 135-136

screen headers, building with
RelativeLayout, 129

updating layouts, 132-133

makeView() method, 204-205

managedQuery() method, 360

managing

activity state, 49

application permissions,
88-91

tasks with DDMS, 30

manifest file. See

AndroidManifest.xml file

Manifest tab (manifest file), 14,

78-79

<manifest> tag, 82

maps

Google Maps, 241

launching map applications
with intents, 248-249

working with Google APIs,
250-251

marketplaces

AndAppStore, 404

Android Market, 8, 425

billing, 401

developer account
benefits, 402

developer accounts,
396-397, 402

explained, 395

language support, 405

locales, 326-327

removing applications
from, 402

return policy, 401-402

uploading applications to,
397-400

444

listening

ptg

MobiHand, 404

PocketGear, 404

SHOP4APPS, 404

SlideME, 404

master layouts, updating for main

menu screens, 132-133

MediaController control, 354

MediaPlayer class, 353

MediaRecorder class, 353

MediaStore, 360

MenuActivity class, 44

menus

context menus, 138

main menus. See main
menu screens

options menus

adding resources to,
138-139

adding to activities, 139

handling menu
selections, 140

MessageDigest class, 285

Messaging application, 37

methods

addTab(), 155

addTextChangedListener(),
169

afterTextChanged(), 191

assertTrue(), 377

bindService(), 317

clearAnimation(), 122-123

commit(), 212

compress(), 228

contains(), 177

containsKey(), 210

create(), 193

createChooser(), 226

createFromResource(), 173

createScaledBitmap(), 229

creating, 415

d() (Log class), 54

deleteFile(), 359

dismiss(), 264

dismissDialog(), 53, 183-184

doInBackground(), 265, 268,
273, 283-285, 297

e() (Log class), 54

execute(), 267, 298

fileList(), 359

findViewById(), 54, 147, 155,
171-173, 191

finish(), 51

format(), 187

fromFile(), 228

GET, 282-285

getActivity(), 376

getApplicationContext(), 46

getAssets(), 74

getAttributeValue(), 157

getBestProvider(), 244

getCacheDir(), 359

getCallState(), 279

getColor(), 65

getConfiguration(), 329

getDeviceId(), 279

getDimension(), 66

getDir(), 359

getDrawable(), 67

getFilesDir(), 359

getFromLocation(), 247

getFromLocationName(), 247

getIntent(), 51

getLastKnownLocation(), 245

getLatitude(), 245

getLongitude(), 245

getNetworkInfo(), 261

getNetworkType(), 279

getOwnerActivity(), 194

getPackageInfo(), 392

getPhoneType(), 279

getPreferences(), 50, 110

getProvider(), 244

getQuestionImageDrawable(),
206

getQuestionImageUrl(), 207

getResources(), 62, 74

getSharedPreferences(),
46, 110

getSimOperator(), 280

getSimOperatorName(), 280

getSimSerialNumber(), 280

getSimState(), 280

getString(), 64, 177

getSubscriberId(), 280

getSystem(), 63

getSystemService(), 261,
279, 362-363

getText(), 168, 176

getVoiceMailNumber(), 280

getWidgetData(), 311

getXml(), 72, 156

handleAnswerAndShowNext
Question(), 211

handleNoQuestions(), 213

i() (Log class), 54

inflate(), 191

inputStreamToString(), 147

insertScoreRow(), 270

isNetworkRoaming(), 280

listen(), 279

How can we make this index more useful? Email us at indexes@samspublishing.com

methods

445

ptg

loadQuestionBatch(), 273

makeView(), 204-205

managedQuery(), 360

next(), 156

onActivityResult(), 49, 52,
224-225, 228

onAnimationEnd(), 123

onBind(), 316

onCancelled(), 270-271

OnClickListener(), 222

onCreate(), 49, 171, 176,
208, 268, 316

onCreateDialog(), 53,
183-185, 190, 296

onCreateOptionsMenu(), 139

onDateSet(), 185

onDeleted(), 309

onDestroy(), 49, 177, 316

onDisabled(), 309

onEnabled(), 309

onItemClick(), 135-136

OnItemClickListener(), 136

onLongClick(), 227

onOptionsItemSelected(), 140

onPause(), 49, 122

onPostExecute(), 266,
270, 273

onPreExecute(), 265,
268, 272

onPrepareDialog(), 53,
183-186

onProgressUpdate(),
265, 269

onReceive(), 309

onResume(), 49

onRetainNonConfiguration
Instance(), 338

onStartCommand(), 316

onUpdate(), 309-311

openFileInput(), 358

openFileOutput(), 359

openRawResource(), 72, 147

openStream(), 268

parse(), 248

POST, 286-288

processScores(), 269

publishProgress(), 265, 269

putExtra(), 51

putInt(), 176

putLong(), 176

putString(), 176

removeDialog(), 53, 183-184,
192-194

renaming, 417-418

requestLocationUpdates(),
245

requestRouteToHost(), 261

saveAvatar(), 225-228

setAdapter(), 173

setContentView(), 54, 268

setCurrentTabByTag(), 155

setCurrentText(), 205, 207

setEntity(), 288

setFactory(), 204

setImageBitmap(), 221

setImageDrawable(),
206-207, 221

setImageResource(), 221

setImageURI(), 206, 215,
221-222

setImageViewBitmap(), 311

setImageViewResource(), 311

setInAnimation(), 207

setInput(), 262, 269, 273

setIntent(), 140

setLayoutAnimation(), 122

setNegativeButton(), 192

setOnClickListener(),
141, 171

setOnClickPendingIntent(),
314

setOnItemClickListener(),
135, 141

setOnItemSelectedListener(),
174

setOnKeyListener(), 169

setOnLongClickListener(), 223

setProgress(), 263

setSelection(), 141, 173

setText(), 147, 168, 205, 207

setTextViewText(), 311

setTheme(), 350

setTitle(), 192

setup(), 155, 376

showDialog(), 53, 183-186,
193-194

startActivity(), 48, 51, 123

startActivityForResult(), 49,
52, 224

startAnimation(), 122

startService(), 317

stopSelf(), 317

stopSelfResult(), 317

stopService(), 318

tearDown(), 376

updateAppWidget(), 311, 314

updateDate(), 186

v() (Log class), 54

w() (Log class), 54

446

methods

ptg

minimum Android SDK version,

setting, 83

mksdcard utility, 39

MobiHand, 404

monitoring battery life, 363

multimedia, 353

audio, 353

supported formats, 364

video, 354

MultipartEntity class, 288

multiple App Widgets, 319

N

naming

Android packages, 82

applications, 84

network applications

accessing network services

HTTP networking, 261-262

network permissions, 260

network status, checking,
260-261

accessing phone status
information

retrieving telephony
information, 279-280

setting phone state
permissions, 278

asynchronous tasks

with AsyncTask class,
265-266

with threads and
handlers, 266

designing

application servers,
256-257

explained, 255-256

progress bars, 257

guidelines, 257-258

progress bars, indicating
network activity with, 262

determinate
progress, 263

indeterminate
progress, 263

progress dialogs, 263-264

question batches, download-
ing and parsing, 271-272

dismissing progress
dialog, 273

handling background
processing, 273

starting progress
dialog, 272

scores, downloading and
displaying, 267

background processing,
268-269

cancellation, 270-271

progress indicator,
268-270

progress updates,
269-270

ScoreDownloaderTask
class, 267

testing

on emulator, 258

on hardware, 259

uploading data to servers

determining data to send,
277-278

explained, 281

with HTTP GET method,
282-285

with HTTP POST method,
286-288

network permissions, 260

network roaming information,

retrieving, 280

network services, accessing

HTTP networking, 261-262

network permissions, 260

network status, checking,
260-261

network status, checking,

260-261

network type information,

retrieving, 279

NetworkInfo class, 261

New Android Project dialog

Create New Project in
Workspace button, 10

Create Project from Existing
Sample button, 13

Create Project from Existing
Source button, 13

New menu commands

Android Project, 10

Class, 415

next() method, 156

Notification object, 349

NotificationManager system

service, 349

notifications, 348-349

How can we make this index more useful? Email us at indexes@samspublishing.com

notifications

447

ptg

O

objects

Context

getConfiguration()
method, 329

getSystemService()
method, 261, 279

Notification, 349

RemoteViews, 311

SensorManager, 362

Service

creating, 316-317

starting/stopping,
317-318

WifiManager, 363

onActivityResult() method, 49,

52, 224-225, 228

onAnimationEnd() method, 123

onBind() method, 316

onCancelled() method, 270-271

OnClickListener() method, 222

onCreate() method, 49, 171, 176,

208, 268, 316

onCreateDialog() method, 53,

183-185, 190, 296

onCreateOptionsMenu()

method, 139

onDateSet() method, 185

onDeleted() method, 309

onDestroy() method, 49,

177, 316

onDisabled() method, 309

onDoubleTap gesture, 351

onDoubleTapEvent gesture, 351

onDown gesture, 351

onEnabled() method, 309

onFling gesture, 352

onItemClick() method, 135-136

OnItemClickListener()

method, 136

online Android resources,

425-426

onLongClick() method, 227

onLongPress gesture, 352

onOptionsItemSelected()

method, 140

onPause() method, 49, 122

onPostExecute() method, 266,

270, 273

onPreExecute() method, 265,

268, 272

onPrepareDialog() method, 53,

183-186

onProgressUpdate() method,

265, 269

onReceive() method, 309

onResume() method, 49

onRetainNonConfiguration

Instance() method, 338

onScroll gesture, 352

onShowPress gesture, 351

onSingleTapConfirmed

gesture, 351

onSingleTapUp gesture, 351

onStartCommand() method, 316

onUpdate() method, 309, 311

Open Handset Alliance, 7-8, 425

openFileInput() method, 358

openFileOutput() method, 359

OpenGL ES, 120, 355

OpenIntents, 362, 425

OpenIntents.org website, 53

openRawResource() method,

72, 147

OpenSocial initiative, 301

openStream() method, 268

operating systems

configuring for device
debugging, 414

supported operating
systems, 409

options menus

adding resources to, 138-139

adding to activities, 139

handling menu
selections, 140

org.w3c.dom package, 72

org.xml.sax.* package, 72

org.xmlpull.* package, 72

organizing

code, 418

imports, 415-416

orientation sensor, 362

Override/Implement Methods

command (Source menu), 415

overriding doInBackground()

method, 273

P

PackageManager class, 392

packages

android.bluetooth, 363

android.database, 359

android.database.sqlite, 359

android.gesture, 352

android.graphics, 355

android.media, 353

android.provider, 360

448

objects

ptg

android.service.wallpaper,
357

android.speech.Recognizer
Intent, 353

android.speech.tts, 352

installing, 390-391

java.io, 358

naming, 82

packaging applications, 387-390

parse() method, 248

parsing

declaring string literals for
question parsing, 209

question batches, 271-272

dismissing progress
dialog, 273

handling background
processing, 273

starting progress
dialog, 272

SAX parser, 74

XML files, 156-157

XMLPullParser, 74

passing information with intents,

51-52

password dialog

adding to QuizSettingsActivity
class, 190-193

designing, 188-189

implementing layout, 190

launching, 193

performance

of animation, 124

performance testing, 370

<permission> element, 347

permissions, 347

BATTERY_STATS, 363

including in Android manifest
file, 92

managing, 88-91

network permissions, 260

phone state
permissions, 278

Permissions tab (manifest file),

14, 79-80

personalization

explained, 356

ringtones, 356

wallpaper, 356-357

phone status

information, accessing

retrieving telephony
information

call state information, 279

CDMA/GSM information,
279-280

network roaming
information, 280

network type
information, 279

SIM information, 280

voice mail
information, 280

setting phone state
permissions, 278

PlayActivity class, 44

player relationships, enhancing,

299-300

pleaseWaitDialog control, 264

plug-ins. See ADT (Android

Development Tools)

PocketGear, 404

POST method, 286-288

power settings, 363

preferences

activity preferences, 110

application preferences

accessing, 46-47

creating, 106-107

debug configuration, 108

retrieving shared
preferences, 107-108

saving shared
preferences, 107

privacy concerns, 302

processScores() method, 269

programming languages,

support for, 23

progress bars, 257

clearing, 270

indicating network activity
with, 262

determinate
progress, 263

indeterminate
progress, 263

progress dialogs, 263-264

starting, 268

progress dialogs, 263-264

dismissing, 273

starting, 272

progress updates, handling,

269-270

ProgressBar control, 263

ProgressDialog class, 182,

263-264

ProGuard, 406

Project menu commands,

Clean, 420

How can we make this index more useful? Email us at indexes@samspublishing.com

Project menu commands

449

ptg

projects

adding to Eclipse, 13

creating, 10-11, 103

debug and run configurations,
18-19

debugging with DDMS, 21-22,
29-30

developing without
Eclipse, 39

editing project resources

AndroidManifest.xml file,
13-15

/res files, 15-16

string resources, 16

launching

on handset, 22-23

with emulator, 19-21

project files, 12-13

project resources, adding,
103-104

properties of App Widgets,

306-307

prototypes

activities, 105-106

application preferences

creating, 106-107

retrieving shared
preferences, 107-108

saving shared
preferences, 107

debug configuration, 108

designing

activity requirements,
96-97

creating new project, 103

game screen
features, 102

help screen features,
98-99

high-level game
features, 96

main menu screen
features, 98

scores screen
features, 100

settings screen features,
100-101

splash screen features,
97-98

launching in emulator, 109

project resources, adding,
103-104

providers. See content providers

ProviderTestCase2 class, 380

proximity sensor, 362

publishing

on Android Market

billing, 401

developer account
benefits, 402

explained, 395

removing
applications, 402

return policy, 401-402

signing up for developer
account, 396-397

uploading applications,
397-400

release process, 383-385

packaging and signing,
387-390

preparing release
candidate build,
385-386

testing packaged
application, 390-392

testing release candidate,
386-387

self-distribution, 402-403

to other marketplaces,
404-405

publishProgress() method,

265, 269

putExtra() method, 51

putInt() method, 176

putString() method, 176

Q

question batches, downloading

and parsing, 271-272

dismissing progress
dialog, 273

handling background
processing, 273

starting progress dialog, 272

<question> element, 201

questions

declaring string literals for
question parsing, 209

storing in hashtable, 210

<questions> element, 201

QuizActivity class, 96

QuizGameActivity class, 97, 277

QuizHelpActivity class, 97

QuizMenuActivity class, 97

QuizScoresActivity class, 97

450

projects

ptg

QuizSettingsActivity class,

97, 277

adding DatePickerDialog to,
184-185

adding password dialog to,
190-193

onCreateDialog()
method, 296

QuizSplashActivity class, 96

QuizTask class, 271-272

QuizWidgetProvider class, 316

R

R.java class file, 62

raw resource files, 72-73

accessing, 147-148

adding, 147

raw sensor data, reading, 362

reading

raw sensor data, 362

settings from
SharedPreferences,
177-178

rearranging tabs, 421

<receiver> element, 307

receiving location updates, 245

refactoring, 418-420

Reference tab (Android

documentation), 28

referencing

application resources, 62

system resources, 63

region-specific resources,

specifying, 326

registering

activities, 86-87, 92

for Android Market developer
accounts, 396-397

regular versioned builds, 368-369

relationships, enhancing,

299-300

RelativeLayout control, 115,

129, 132

release builds, 383

release candidate

defined, 383

packaging and signing,
387-390

preparing, 385-386

testing, 386-387

release process, 383-385

packaging and signing,
387-390

preparing release candidate
build, 385-386

testing packaged application,
390-392

testing release candidate,
386-387

RemoteViews object, 311

removeDialog() method, 53,

183-184, 192-194

removing

applications from Android
Market, 402

dialogs, 184

Rename tool, 417-418

renaming items, 417-418

representational state transfer

(REST), 300

requestLocationUpdates()

method, 245

requestRouteToHost()

method, 261

/res folder, 12, 15-16, 62

/res/drawable, 13

/res/layout/help.xml, 144

/res/layout/main.xml, 13

/res/layout/scores.xml, 150

/res/raw/quizhelp.txt, 145

/res/values/strings.xml, 13

resource directory qualifiers,

334-335

resources

adding

to game screens,
200-202

to help screens, 145-146

to main menu
screens, 131

to options menus,
138-139

to scores screens,
151-152

to settings screens,
165-166

to splash screens,
116-117

Android Mobile Application
Development website,
424-425

application resources, 46

definition of, 59

referencing, 62

storing, 60-62

colors

explained, 64-65

retrieving, 65

supported color
formats, 65

How can we make this index more useful? Email us at indexes@samspublishing.com

resources

451

ptg

compared to project
assets, 74

dimensions

explained, 65-66

supported dimension
units, 66

drawable resources, 104

editing

AndroidManifest.xml file,
13-15

/res files, 15-16

string resources, 16

explained, 73

files. See files

images

loading, 67

ShapeDrawable class, 67

supported image
formats, 66-67

InformIT website, 423-424

layouts

accessing
programmatically, 71

adding to Been There,
Done That! game, 104

designing with Layout
Resource Editor, 68-70

designing with XML, 69

explained, 67-68

online Android resources,
425-426

raw resource files, 72-73,
147-148

specifying

default resources, 325

language-specific
resources, 325

region-specific
resources, 326

storing, 74

strings

accessing, 64

adding to Been There,
Done That! game, 104

explained, 64

formatting, 64

system resources

definition of, 59

documentation for, 74

referencing, 63

storing, 63

XML resources,
retrieving, 156

responsive applications, 367

REST (representational state

transfer), 300

results, launching activities

for, 48

retrieving

color resources, 65

shared preferences, 107-108

XML files, 156

return policy (Android Market),

401-402

reverse-geocoding, 247

RingtoneManager class, 356

ringtones, 356

running

automated tests, 378-379

tasks asynchronously

with AsyncTask class,
265-266

with threads and
handlers, 266

S

sandboxes, 386

saveAvatar() method, 225-228

saving

activity state, 50-51

bitmaps, 228-229

settings to
SharedPreferences, 176

shared preferences, 107

SAX parser, 74

scaling bitmaps, 229-230

<score> element, 152

ScoreDownloaderTask class, 267

scores. See also scores screens

downloading and
displaying, 267

background processing,
268-269

cancellation, 270-271

progress indicator,
268-270

progress updates,
269-270

ScoreDownloaderTask
class, 267

uploading, 285

452

resources

ptg

scores screens

adding resources to, 151-152

completed scores
screen, 157

defining features of, 100

delays in loading, 158

designing, 149

layout requirements, 150

TabHost control

adding tabs to, 155

adding to scores
screen, 150

configuring, 155

setting default tab, 155

updating layout of, 152-154

scores.xml file, 152-154

ScoresActivity class, 44

Screen Capture button

(DDMS), 33-34

screen headers, building with

RelativeLayout control, 129

screen orientations

creating custom layout for
landscape mode, 335-337

handling, 339

listening for screen orienta-
tion changes, 338, 344

screenshots, taking of emulator

or handset, 33-34

SD card images, 38

SDK (Android), 28

defining, 343

detecting
programmatically, 343

installing

explained, 411

Linux installations, 412

Mac OS X
installations, 412

Windows
installations, 411

specifying target SDK, 342

upgrading, 413

versions, 341-342

searching, global search, 361

secure applications, 367

Secure Hash Algorithm

(SHA), 285

security

application permissions, 347

copy protection, 406

self-distribution, 402-403

sensor data, reading, 362

SensorManager object, 362

servers

application servers, 256-257

availability, checking, 261

uploading data to

determining data to send,
277-278

explained, 281

with HTTP GET method,
282-285

with HTTP POST method,
286-288

Service objects

creating, 316-317

starting/stopping, 317-318

services

creating, 316-317

NotificationManager system
service, 349

starting/stopping, 317-318

ServiceTestCase class, 380

setAdapter() method, 173

setContentView() method,

54, 268

setCurrentTabByTag()

method, 155

setCurrentText() method, 205-207

setEntity() method, 288

setFactory() method, 204

setImageBitmap() method, 221

setImageDrawable() method,

206-207, 221

setImageResource() method, 221

setImageURI() method, 206,

215, 221-222

setImageViewBitmap()

method, 311

setImageViewResource()

method, 311

setInAnimation() method, 207

setInput() method, 262, 269, 273

setIntent() method, 140

setLayoutAnimation()

method, 122

setNegativeButton() method, 192

setOnClickListener() method,

141, 171

setOnClickPendingIntent()

method, 314

setOnItemClickListener() method,

135, 141

How can we make this index more useful? Email us at indexes@samspublishing.com

setOnItemClickListener() method

453

ptg

setOnItemSelectedListener()

method, 174

setOnKeyListener() method, 169

setOnLongClickListener()

method, 223

setProgress() method, 263

setSelection() method, 141, 173

setText() method, 147, 168,

205-207

setTextViewText() method, 311

setTheme() method, 350

Settings application, 38

settings screens

adding avatars to, 219-220

adding resources to, 165-166

Button controls

configuring, 170-171

handling button clicks,
171-172

defining features of, 100-101

designing, 161-163

EditText controls

committing EditText input,
169-170

configuring, 168

handling text input, 168

SharedPreferences

defining
SharedPreferences
entries, 175

reading settings from,
177-178

saving settings to, 176

Spinner controls, 172

configuring, 173

handling Spinner
selections, 173-174

listening for selection
events, 174

updating layout of, 166-167

updating to enable friend
requests, 293-295

setTitle() method, 192

setup() method, 155, 376

SHA (Secure Hash

Algorithm), 285

ShapeDrawable class, 67

SharedPreferences, 46-47

defining SharedPreferences
entries, 175

reading settings from,
177-178

retrieving, 107-108

saving, 107

saving settings to, 176

updating to include game
state settings, 208-209

sharing data

content providers

Browser, 360

CallLog, 360

Contacts, 360

explained, 360-361

live folders, 361

MediaStore, 360

UserDictionary, 360

directories, 358

files, 358

form data with
SharedPreferences

defining
SharedPreferences
entries, 175

reading settings from,
177-178

saving settings to, 176

overview, 358

SQLite databases, 359

SHOP4APPS, 404

showDialog() method, 53,

183-186, 193-194

signing applications, 387-390

SIM information, retrieving, 280

simulating

incoming calls to emulator,
31-32

incoming SMS messages to
emulator, 33

skins (emulator), 38-40

SlideME, 404

sliding drawer, 37

SMS messages, simulating

incoming SMS messages to

emulator, 33

SmsManager class, 281

SmsMessage class, 281

social features

friend support

displaying friends’
scores, 298

enabling friend requests,
293-298

enhancing player
relationships, 299-300

explained, 292-293

454

setOnItemSelectedListener() method

ptg

privacy concerns, 302

social networking services,
integrating Android
applications with

explained, 300

Facebook support,
300-301

OpenSocial initiative, 301

other social network
applications, 303

Twitter support, 301

supporting player relation-
ships, 292

tailoring to application, 292

types of, 291

social networking services,

integrating Android

applications with

explained, 300

Facebook support, 300-301

OpenSocial initiative, 301

other social network
applications, 303

Twitter support, 301

social trivia game. See Been

There, Done That! application

software piracy, protecting

against, 406

source control, integrating with

Eclipse, 421

source files, editing, 416-417

Source menu commands,

Override/Implement

Methods, 415

space requirements, 410

speech

converting text to, 352

converting to text, 353

speech recognition, 353

Spinner controls, 172

configuring, 173

handling Spinner selections,
173-174

listening for selection
events, 174

splash screens

adding resources to, 116-117

animation

adding to splash screens,
120-121

animating all views in lay-
out, 122-123

animating specific views,
121-122

handling animation life
cycle events, 123

performance issues, 124

types of, 119-120

defining features of, 97-98

designing, 113-114

Layout controls, 114-116

updating layout of, 117-119

SplashActivity class, 44

SQLite databases, 359

/src folder, 12

stable applications, 367

Stack Overflow: Android

website, 426

startActivity() method, 48,

51, 123

startActivityForResult() method,

49, 52, 224

startAnimation() method, 122

starting

progress dialog, 272

progress indicators, 268

services, 317-318

startService() method, 317

state, activity state

callback methods, 49-50

managing, 49

saving, 50-51

status

network status, checking,
260-261

phone status information,
accessing

retrieving telephony
information, 279-280

setting phone state
permissions, 278

stopping services, 317-318

stopSelf() method, 317

stopSelfResult() method, 317

stopService() method, 318

storing data

application resources, 60-62

directories, 358

files, 358

overview, 358

questions in hashtable, 210

resources, 74

SQLite databases, 359

system resources, 63

How can we make this index more useful? Email us at indexes@samspublishing.com

storing data

455

ptg

strategies for internationalization

forgoing internationalization,
327-328

full internationalization,
328-329

limited
internationalization, 328

strings

accessing, 64

adding to Been There, Done
That! game, 104

adding to settings screens,
165-166

declaring string literals for
question parsing, 209

editing, 16

explained, 64

formatting, 64

styles, 349-350

supplementary materials

Android Mobile Application
Development website,
424-425

InformIT website, 423-424

online Android resources,
425-426

supported operating

systems, 409

system resources

definition of, 59

documentation for, 74

referencing, 63

storing, 63

T

TabHost control

adding tabs to, 155

adding to scores screen, 150

configuring, 155

setting default tab, 155

TableLayout control, 115

tabs. See TabHost control

tags

<activity>, 86-87

<application>

android:debuggable
attribute, 85

android:description
attribute, 85

android:icon attribute, 84

android:label attribute, 84

<intent-filter>, 87-88

<item>, 138

<manifest>, 82

<permission>, 347

<question>, 201

<questions>, 201

<receiver>, 307

<score>, 152

<uses-library>, 82

<uses-permission>, 88

<uses-sdk>, 83

TAKE_AVATAR_CAMERA_REQUEST

intent, 227

TAKE_AVATAR_GALLERY_

REQUEST intent, 228

target handsets

identifying and acquiring, 371

testing on, 373

target platforms, choosing, 342

target SDK, specifying, 342

tasks

asynchronous tasks

running with AsyncTask
class, 265-266

running with threads and
handlers, 266

managing with DDMS, 30

tearDown() method, 376

telephony information, retrieving

call state information, 279

CDMA/GSM information,
279-280

network roaming
information, 280

network type
information, 279

SIM information, 280

voice mail information, 280

TelephonyManager class

getCallState() method, 279

getDeviceId() method, 279

getNetworkType()
method, 279

getPhoneType() method, 279

getSimOperator()
method, 280

getSimOperatorName()
method, 280

getSimSerialNumber()
method, 280

getSimState() method, 280

getSubscriberId()
method, 280

getVoiceMailNumber()
method, 280

isNetworkRoaming()
method, 280

456

strategies for internationalization

ptg

temperature sensor, 362

Test Application Project

Wizard, 375

testing

applications, 40

automated testing, 373

adding more tests,
379-380

creating test cases,
375-377

creating test projects,
374-375

explained, 374

logging application
information, 374

running automated tests,
378-379

best practices, 367-368

coding standards, 368

defect tracking
system, 369

regular versioned builds,
368-369

test plans, 369-370

on emulator, 372

feasibility testing, 373

managing test environment

device fragmentation,
371-372

handset databases, 372

target handsets, 371

network applications

on emulator, 258

on hardware, 259

packaged applications,
390-392

release candidate, 386-387

on target handsets, 373

test cases, creating, 375-377

test environment, managing

device fragmentation,
371-372

handset databases, 372

target handsets, 371

test plans, 369-370

test projects, creating,
374-375

types of testing, 370

text

converting speech to, 353

text input, handling in
EditText controls, 168

TTS (text to speech), 352

TextSwitcher controls, 205

TextView control, 133

themes, 349-350

Thread class, 266, 315

time internationalization, 330

TimePickerDialog, 182

TimeUtils class, 330

title attribute (<item>

element), 138

tools. See specific tools

/tools folder, 27

transformations, 230

translating addresses/

coordinates, 247

trivia game. See Been There,

Done That! application

troubleshooting

firmware upgrades, 343

internationalization, 331

TTS (text to speech), 352

tweened animation, 119

Twitter support, 301

U

@UiThreadTest annotation, 378

UI threads, 50

Update Threads button, 30

updateAppWidget() method,

311, 314

updateDate() method, 186

updating

game screen layout, 202-203

help screen layout, 146

ImageSwitcher control, 207

scores screen layout,
152-154

settings screen layout,
166-167

SharedPreferences to include
game state settings,
208-209

splash screen layout,
117-119

TextSwitcher control, 205

upgrades, testing, 370

upgrading Android SDK, 413

Upload Application button, 397

uploading

applications to Android
Market, 397-400

avatars, 288

player scores, 285

to servers

determining data to send,
277-278

explained, 281

with HTTP GET method,
282-285

with HTTP POST method,
286-288

How can we make this index more useful? Email us at indexes@samspublishing.com

uploading

457

ptg

UrlEncodedFormEntity class, 298

usability testing, 370

USB debugging, enabling,

413-414

user gestures, handling, 351-352

user interfaces

custom views, 350

input methods, 350

speech recognition, 353

styles, 349-350

themes, 349-350

TTS (text to speech), 352

user gestures, handling,
351-352

UserDictionary content

provider, 360

users

alerting with notifications,
348-349

identifiers, 302

informing about network
activity, 257

<uses-library> tag, 82

<uses-permission> tag, 88

<uses-sdk> tag, 83

V

v() method (Log class), 54

/values folder, 16

variables, renaming, 417-418

verifying applications, 391-392

versioning applications, 82-83

video, 354

Videos tab (Android

documentation), 28

VideoView control, 354

View controls, 350

ViewFactory class, 204-205

ViewGroup controls, 350

viewing log information, 35

views

animating all views in layout,
122-123

animating specific views,
121-122

custom views, 350

ViewSwitcher controls, 203-204

generating with ViewFactory,
204-205

ImageSwitcher, 206-207

TextSwitcher, 205

virtual devices. See AVDs

(Android Virtual Devices)

voice mail information,

retrieving, 280

W

w() method (Log class), 54

wallpaper, 356-357

WallpaperManager class, 356

websites

anddev.org, 425

Android developer website,
364, 425

Android Market, 425

Android Mobile Application
Development website,
424-425

Developer.com, 426

FierceDeveloper, 425

InformIT, 423-424

JUnit, 380

Open Handset Alliance, 425

OpenIntents, 425

Stack Overflow: Android, 426

Wireless Developer
Network, 426

Wi-Fi, 363

widget.xml file, 308

widgets. See App Widgets

WifiManager object, 363

Windows

Android SDK installation, 411

device debugging
configuration, 414

Eclipse IDE installation, 410

Wireless Developer Network, 426

wizards, Test Application Project

Wizard, 375

X-Y-Z

XML files

accessing, 72

designing layouts with, 69

editing, 24

formatting, 71

parsing, 156-157

retrieving, 156

XML parsers, 74

XML utility packages, 71-72

XmlPullParser class, 74,

262, 269

XmlResourceParser class,

156-157

zipalign utility, 390

458

UrlEncodedFormEntity class

	COVER
	Contents at a Glance
	Table of Contents
	Introduction
	Part I: Android Fundamentals
	HOUR 1: Getting Started with Android
	Introducing Android
	Familiarizing Yourself with Eclipse
	Running and Debugging Applications
	Summary
	Q&A
	Workshop

	HOUR 2: Mastering the Android Development Tools
	Using the Android Documentation
	Debugging Applications with DDMS
	Working with the Android Emulator
	Using Other Android Tools
	Summary
	Q&A
	Workshop

	HOUR 3: Building Android Applications
	Designing a Typical Android Application
	Using the Application Context
	Working with Activities
	Working with Intents
	Working with Dialogs
	Logging Application Information
	Summary
	Q&A
	Workshop

	HOUR 4: Managing Application Resources
	Using Application and System Resources
	Working with Simple Resource Values
	Working with Drawable Resources
	Working with Layouts
	Working with Files
	Working with Other Types of Resources
	Summary
	Q&A
	Workshop

	HOUR 5: Configuring the Android Manifest File
	Exploring the Android Manifest File
	Configuring Basic Application Settings
	Defining Activities
	Managing Application Permissions
	Managing Other Application Settings
	Summary
	Q&A
	Workshop

	HOUR 6: Designing an Application Framework
	Designing an Android Trivia Game
	Implementing an Application Prototype
	Running the Game Prototype
	Summary
	Q&A
	Workshop

	Part II: Building an Application Framework
	HOUR 7: Implementing an Animated Splash Screen
	Designing the Splash Screen
	Implementing the Splash Screen Layout
	Working with Animation
	Summary
	Q&A
	Workshop

	HOUR 8: Implementing the Main Menu Screen
	Designing the Main Menu Screen
	Implementing the Main Menu Screen Layout
	Working with the ListView Control
	Working with Other Menu Types
	Summary
	Q&A
	Workshop

	HOUR 9: Developing the Help and Scores Screens
	Designing the Help Screen
	Implementing the Help Screen Layout
	Working with Files
	Designing the Scores Screen
	Implementing the Scores Screen Layout
	Designing a Screen with Tabs
	Working with XML
	Summary
	Q&A
	Workshop

	HOUR 10: Building Forms to Collect User Input
	Designing the Settings Screen
	Implementing the Settings Screen Layout
	Using Common Form Controls
	Saving Form Data with SharedPreferences
	Summary
	Q&A
	Workshop

	HOUR 11: Using Dialogs to Collect User Input
	Working with Activity Dialogs
	Using DatePickerDialog
	Working with Custom Dialogs
	Summary
	Q&A
	Workshop

	HOUR 12: Adding Application Logic
	Designing the Game Screen
	Implementing the Game Screen Layout
	Working with ViewSwitcher Controls
	Wiring Up Game Logic
	Summary
	Q&A
	Workshop

	Part III: Enhancing Your Application with Powerful Android Features
	HOUR 13: Working with Images and the Camera
	Designing the Avatar Feature
	Adding an Avatar to the Settings Screen Layout
	Working with ImageButton Controls
	Working with Image Media
	Working with Bitmaps
	Summary
	Q&A
	Workshop

	HOUR 14: Adding Support for Location-Based Services
	Designing the Favorite Place Feature
	Implementing the Framework for the Favorite Place Feature
	Using Location-Based Services
	Using Geocoding Services
	Working with Maps
	Summary
	Q&A
	Workshop

	HOUR 15: Adding Network Support
	Designing Network Applications
	Developing Network Applications
	Accessing Network Services
	Indicating Network Activity with Progress Bars
	Running Tasks Asynchronously
	Downloading and Displaying Scores
	Downloading and Parsing Question Batches
	Summary
	Q&A
	Workshop

	HOUR 16: Adding More Network Support
	Determining Data to Send to the Server
	Accessing Phone Status Information
	Uploading Data to a Remote Application Server
	Summary
	Q&A
	Workshop

	HOUR 17: Adding Social Features
	Enhancing Your Application with Social Features
	Adding Friend Support to Your Application
	Integrating with Social Networking Services
	Summary
	Q&A
	Workshop

	HOUR 18: Creating a Home Screen App Widget
	Designing an App Widget
	Handling App Widget User Events
	Working with Widget Background Operations
	Summary
	Q&A
	Workshop

	Part IV: Adding Polish to Your Android Application
	HOUR 19: Internationalizing Your Application
	General Internationalization Principles
	How Android Localization Works
	Android Internationalization Strategies
	Using Localization Utilities
	Summary
	Q&A
	Workshop

	HOUR 20: Developing for Different Devices
	Configuration Management for Android
	Summary
	Q&A
	Workshop

	HOUR 21: Diving Deeper into Android
	Exploring More Core Android Features
	Designing Advanced User Interfaces
	Working with Multimedia
	Working with 2D and 3D Graphics
	Personalizing Android Devices
	Managing and Sharing Data
	Accessing Underlying Device Hardware
	Summary
	Q&A
	Workshop

	HOUR 22: Testing Android Applications
	Testing Best Practices
	Maximizing Test Coverage
	Summary
	Q&A
	Workshop

	Part V: Publishing Your Application
	HOUR 23: Getting Ready to Publish
	Understanding the Release Process
	Preparing the Release Candidate Build
	Testing the Application Release Candidate
	Packaging and Signing an Application
	Testing the Signed Application Package
	Summary
	Q&A
	Workshop

	HOUR 24: Publishing on the Android Market
	Selling on the Android Market
	Exploring Other Android Publishing Options
	Summary
	Q&A
	Workshop

	Part VI: Appendixes
	APPENDIX A: Configuring Your Android Development Environment
	Development Machine Prerequisites
	Installing the Java Development Kit
	Installing the Eclipse IDE
	Installing the Android SDK
	Installing and Configuring the Android Plug-in for Eclipse (ADT)
	Upgrading the Android SDK
	Configuring Development Hardware for Device Debugging

	APPENDIX B: Eclipse IDE Tips and Tricks
	Creating New Classes and Methods
	Organizing Imports
	Documenting Code
	Using Auto-Complete
	Editing Code Efficiently
	Renaming Almost Anything
	Formatting Code
	Organizing Code
	Fun with Refactoring
	Resolving Mysterious Build Errors
	Creating Custom Log Filters
	Moving Tabs Around
	Integrating Source Control

	APPENDIX C: Supplementary Materials
	Accessing the Publisher’s Website
	Accessing the Authors’ Website
	Contacting the Authors
	Leveraging Online Android Resources

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

